首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps
  • 本地全文:下载
  • 作者:Takashi Takeuchi ; Kazuhiro Yabana
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-77909-y
  • 出版社:Springer Nature
  • 摘要:In this study, a third-order nonlinear optical responses in quantum plasmonic metasurfaces composed of metallic nano-objects with subnanometer gaps were investigated using time-dependent density functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third-order nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the induced charge densities at the gaps between nano-objects. Particularly, when the third harmonic generation overlapped with the plasmon resonance, a large third-order nonlinearity was achieved. At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third-order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the observed third-order nonlinearity was approximately three orders of magnitude larger than that seen at longer gap distances. The extremely large third-order nonlinearities were found to originate from electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.
  • 其他摘要:Abstract In this study, a third-order nonlinear optical responses in quantum plasmonic metasurfaces composed of metallic nano-objects with subnanometer gaps were investigated using time-dependent density functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third-order nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the induced charge densities at the gaps between nano-objects. Particularly, when the third harmonic generation overlapped with the plasmon resonance, a large third-order nonlinearity was achieved. At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third-order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the observed third-order nonlinearity was approximately three orders of magnitude larger than that seen at longer gap distances. The extremely large third-order nonlinearities were found to originate from electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.
国家哲学社会科学文献中心版权所有