摘要:In this study, a third-order nonlinear optical responses in quantum plasmonic metasurfaces composed of metallic nano-objects with subnanometer gaps were investigated using time-dependent density functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third-order nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the induced charge densities at the gaps between nano-objects. Particularly, when the third harmonic generation overlapped with the plasmon resonance, a large third-order nonlinearity was achieved. At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third-order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the observed third-order nonlinearity was approximately three orders of magnitude larger than that seen at longer gap distances. The extremely large third-order nonlinearities were found to originate from electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.
其他摘要:Abstract In this study, a third-order nonlinear optical responses in quantum plasmonic metasurfaces composed of metallic nano-objects with subnanometer gaps were investigated using time-dependent density functional theory, a fully quantum mechanical approach. At gap distances of ≥ 0.6 nm, the third-order nonlinearities monotonically increased as the gap distance decreased, owing to enhancement of the induced charge densities at the gaps between nano-objects. Particularly, when the third harmonic generation overlapped with the plasmon resonance, a large third-order nonlinearity was achieved. At smaller gap distances down to 0.1 nm, we observed the appearance of extremely large third-order nonlinearity without the assistance of the plasmon resonance. At a gap distance of 0.1 nm, the observed third-order nonlinearity was approximately three orders of magnitude larger than that seen at longer gap distances. The extremely large third-order nonlinearities were found to originate from electron transport by quantum tunneling and/or overbarrier currents through the subnanometer gaps.