首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Muscle and epidermal contributions of the structural protein β-spectrin promote hypergravity-induced motor neuron axon defects in C. elegans
  • 本地全文:下载
  • 作者:Saraswathi S. Kalichamy ; Alfredo V. Alcantara ; Ban-Seok Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-78414-y
  • 出版社:Springer Nature
  • 摘要:Biology is adapted to Earth’s gravity force, and the long-term effects of varying gravity on the development of animals is unclear. Previously, we reported that high gravity, called hypergravity, increases defects in the development of motor neuron axons in the nematode Caenorhabditis elegans. Here, we show that a mutation in the unc-70 gene that encodes the cytoskeletal β-spectrin protein suppresses hypergravity-induced axon defects. UNC-70 expression is required in both muscle and epidermis to promote the axon defects in high gravity. We reveal that the location of axon defects is correlated to the size of the muscle cell that the axon traverses. We also show that mutations that compromise key proteins of hemidesmosomal structures suppress hypergravity-induced axon defects. These hemidesmosomal structures play a crucial role in coupling mechanical force between the muscle, epidermis and the external cuticle. We speculate a model in which the rigid organization of muscle, epidermal and cuticular layers under high gravity pressure compresses the narrow axon migration pathways in the extracellular matrix hindering proper axon pathfinding of motor neurons.
  • 其他摘要:Abstract Biology is adapted to Earth’s gravity force, and the long-term effects of varying gravity on the development of animals is unclear. Previously, we reported that high gravity, called hypergravity, increases defects in the development of motor neuron axons in the nematode Caenorhabditis elegans . Here, we show that a mutation in the unc-70 gene that encodes the cytoskeletal β-spectrin protein suppresses hypergravity-induced axon defects. UNC-70 expression is required in both muscle and epidermis to promote the axon defects in high gravity. We reveal that the location of axon defects is correlated to the size of the muscle cell that the axon traverses. We also show that mutations that compromise key proteins of hemidesmosomal structures suppress hypergravity-induced axon defects. These hemidesmosomal structures play a crucial role in coupling mechanical force between the muscle, epidermis and the external cuticle. We speculate a model in which the rigid organization of muscle, epidermal and cuticular layers under high gravity pressure compresses the narrow axon migration pathways in the extracellular matrix hindering proper axon pathfinding of motor neurons.
国家哲学社会科学文献中心版权所有