摘要:Large molecular interaction networks are nowadays assembled in biomedical researches along with important technological advances. Diverse interaction measures, for which input solely consisting of the incidence of causal-factors, with the corresponding outcome of an inquired effect, are formulated without an obvious mathematical unity. Consequently, conceptual and practical ambivalences arise. We identify here a probabilistic requirement consistent with that input, and find, by the rules of probability theory, that it leads to a model multiplicative in the complement of the effect. Important practical properties are revealed along these theoretical derivations, that has not been noticed before.
其他摘要:Abstract Large molecular interaction networks are nowadays assembled in biomedical researches along with important technological advances. Diverse interaction measures, for which input solely consisting of the incidence of causal-factors, with the corresponding outcome of an inquired effect, are formulated without an obvious mathematical unity. Consequently, conceptual and practical ambivalences arise. We identify here a probabilistic requirement consistent with that input, and find, by the rules of probability theory, that it leads to a model multiplicative in the complement of the effect. Important practical properties are revealed along these theoretical derivations, that has not been noticed before.