摘要:Heavy metal (HM) pollutants can cause serious phytotoxicity or oxidative stress in plants. Buddleja L., commonly known as “butterfly bushes”, are frequently found growing on HM-contaminated land. However, to date, few studies have focused on the physiological and biochemical responses of Buddleja species to HM stress. In this study, potted seedlings of B. asiatica Lour. and B. macrostachya Wall. ex Benth. were subjected to various cadmium (Cd) concentrations (0, 25, 50, 100, and 200 mg kg−1) for 90 days. Both studied Buddleja species showed restricted Cd translocation capacity. Exposure to Cd, non-significant differences (p > 0.05) were observed, including quantum yield of photosystem II (PSII), effective quantum yield of PSII, photochemical quenching and non-photochemical quenching in both species between all studied Cd concentrations. Moreover, levels of cellular reactive oxygen species (ROS) significantly declined (p < 0.05) with low malondialdehyde concentrations. In B. asiatica, high superoxide dismutase and significantly enhanced (p < 0.05) peroxidase (POD) activity contributed greatly to the detoxification of excess ROS, while markedly enhanced POD activity was observed in B. macrostachya. Additionally, B. macrostachya showed higher membership function values than did B. asiatica. These results suggested that both Buddleja species exhibited high Cd resistance and acclimatization.
其他摘要:Abstract Heavy metal (HM) pollutants can cause serious phytotoxicity or oxidative stress in plants. Buddleja L., commonly known as “butterfly bushes”, are frequently found growing on HM-contaminated land. However, to date, few studies have focused on the physiological and biochemical responses of Buddleja species to HM stress. In this study, potted seedlings of B . asiatica Lour. and B . macrostachya Wall. ex Benth. were subjected to various cadmium (Cd) concentrations (0, 25, 50, 100, and 200 mg kg −1 ) for 90 days. Both studied Buddleja species showed restricted Cd translocation capacity. Exposure to Cd, non-significant differences ( p > 0.05) were observed, including quantum yield of photosystem II (PSII), effective quantum yield of PSII, photochemical quenching and non-photochemical quenching in both species between all studied Cd concentrations. Moreover, levels of cellular reactive oxygen species (ROS) significantly declined ( p < 0.05) with low malondialdehyde concentrations. In B. asiatica , high superoxide dismutase and significantly enhanced ( p < 0.05) peroxidase (POD) activity contributed greatly to the detoxification of excess ROS, while markedly enhanced POD activity was observed in B. macrostachya . Additionally, B. macrostachya showed higher membership function values than did B. asiatica . These results suggested that both Buddleja species exhibited high Cd resistance and acclimatization.