首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Constant neuropilar ratio in the insect brain
  • 本地全文:下载
  • 作者:Alexey A. Polilov ; Anastasia A. Makarova
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-020-78599-2
  • 出版社:Springer Nature
  • 摘要:Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller's rule, and patterns specific for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no significant differences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant.
  • 其他摘要:Abstract Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller's rule, and patterns specific for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no significant differences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant.
国家哲学社会科学文献中心版权所有