首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Rapid microbial identification and colistin resistance detection via MALDI-TOF MS using a novel on-target extraction of membrane lipids
  • 本地全文:下载
  • 作者:Matthew Sorensen ; Courtney E. Chandler ; Francesca M. Gardner
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-78401-3
  • 出版社:Springer Nature
  • 摘要:Rapid infection diagnosis is critical to improving patient treatment and outcome. Recent studies have shown microbial lipids to be sensitive and selective biomarkers for identifying bacterial and fungal species and antimicrobial resistance. Practical procedures for microbial lipid biomarker analysis will therefore improve patient outcomes and antimicrobial stewardship. However, current lipid extraction methods require significant hands-on time and are thus not suited for direct adoption as a clinical assay for microbial identification. Here, we have developed a method for lipid extraction directly on the surface of stainless-steel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plates, termed fast lipid analysis technique or FLAT, which facilitates the identification of bacterial and fungal species using a sub-60-minute workflow. Additionally, our method detects lipid A modifications in Gram-negative bacteria that are associated with antimicrobial resistance, including to colistin.
  • 其他摘要:Abstract Rapid infection diagnosis is critical to improving patient treatment and outcome. Recent studies have shown microbial lipids to be sensitive and selective biomarkers for identifying bacterial and fungal species and antimicrobial resistance. Practical procedures for microbial lipid biomarker analysis will therefore improve patient outcomes and antimicrobial stewardship. However, current lipid extraction methods require significant hands-on time and are thus not suited for direct adoption as a clinical assay for microbial identification. Here, we have developed a method for lipid extraction directly on the surface of stainless-steel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plates, termed fast lipid analysis technique or FLAT, which facilitates the identification of bacterial and fungal species using a sub-60-minute workflow. Additionally, our method detects lipid A modifications in Gram-negative bacteria that are associated with antimicrobial resistance, including to colistin.
国家哲学社会科学文献中心版权所有