首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila
  • 本地全文:下载
  • 作者:Peter Klepsatel ; Thirnahalli Nagaraj Girish ; Martina Gáliková
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-78726-z
  • 出版社:Springer Nature
  • 摘要:Organisms have evolved various physiological mechanisms to cope with unfavourable environmental conditions. The ability to tolerate non-optimal thermal conditions can be substantially improved by acclimation. In this study, we examined how an early-life acclimation to different temperatures (19 °C, 25 °C and 29 °C) influences thermal reaction norms for energy stores in Drosophila adults. Our results show that acclimation temperature has a significant effect on the amount of stored fat and glycogen (and their relative changes) and the optimal temperature for their accumulation. Individuals acclimated to 19 °C had, on average, more energy reserves than flies that were initially maintained at 25 °C or 29 °C. In addition, acclimation caused a shift in optimal temperature for energy stores towards acclimation temperature. We also detected significant population differences in this response. The effect of acclimation on the optimal temperature for energy stores was more pronounced in flies from the temperate climate zone (Slovakia) than in individuals from the tropical zone (India). Overall, we found that the acclimation effect was stronger after acclimation to low (19 °C) than to high (29 °C) temperature. The observed sensitivity of thermal reaction norms for energy reserves to acclimation temperature can have important consequences for surviving periods of food scarcity, especially at suboptimal temperatures.
  • 其他摘要:Abstract Organisms have evolved various physiological mechanisms to cope with unfavourable environmental conditions. The ability to tolerate non-optimal thermal conditions can be substantially improved by acclimation. In this study, we examined how an early-life acclimation to different temperatures (19 °C, 25 °C and 29 °C) influences thermal reaction norms for energy stores in Drosophila adults. Our results show that acclimation temperature has a significant effect on the amount of stored fat and glycogen (and their relative changes) and the optimal temperature for their accumulation. Individuals acclimated to 19 °C had, on average, more energy reserves than flies that were initially maintained at 25 °C or 29 °C. In addition, acclimation caused a shift in optimal temperature for energy stores towards acclimation temperature. We also detected significant population differences in this response. The effect of acclimation on the optimal temperature for energy stores was more pronounced in flies from the temperate climate zone (Slovakia) than in individuals from the tropical zone (India). Overall, we found that the acclimation effect was stronger after acclimation to low (19 °C) than to high (29 °C) temperature. The observed sensitivity of thermal reaction norms for energy reserves to acclimation temperature can have important consequences for surviving periods of food scarcity, especially at suboptimal temperatures.
国家哲学社会科学文献中心版权所有