首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Model-size reduction for reservoir computing by concatenating internal states through time
  • 本地全文:下载
  • 作者:Yusuke Sakemi ; Kai Morino ; Timothée Leleu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-020-78725-0
  • 出版社:Springer Nature
  • 摘要:Reservoir computing (RC) is a machine learning algorithm that can learn complex time series from data very rapidly based on the use of high-dimensional dynamical systems, such as random networks of neurons, called “reservoirs.” To implement RC in edge computing, it is highly important to reduce the amount of computational resources that RC requires. In this study, we propose methods that reduce the size of the reservoir by inputting the past or drifting states of the reservoir to the output layer at the current time step. To elucidate the mechanism of model-size reduction, the proposed methods are analyzed based on information processing capacity proposed by Dambre et al. (Sci Rep 2:514, 2012). In addition, we evaluate the effectiveness of the proposed methods on time-series prediction tasks: the generalized Hénon-map and NARMA. On these tasks, we found that the proposed methods were able to reduce the size of the reservoir up to one tenth without a substantial increase in regression error.
  • 其他摘要:Abstract Reservoir computing (RC) is a machine learning algorithm that can learn complex time series from data very rapidly based on the use of high-dimensional dynamical systems, such as random networks of neurons, called “reservoirs.” To implement RC in edge computing, it is highly important to reduce the amount of computational resources that RC requires. In this study, we propose methods that reduce the size of the reservoir by inputting the past or drifting states of the reservoir to the output layer at the current time step. To elucidate the mechanism of model-size reduction, the proposed methods are analyzed based on information processing capacity proposed by Dambre et al. (Sci Rep 2:514, 2012). In addition, we evaluate the effectiveness of the proposed methods on time-series prediction tasks: the generalized Hénon-map and NARMA. On these tasks, we found that the proposed methods were able to reduce the size of the reservoir up to one tenth without a substantial increase in regression error.
国家哲学社会科学文献中心版权所有