首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Calibrated scintigraphic imaging procedures improve quantitative assessment of the cardiac sympathetic nerve activity
  • 本地全文:下载
  • 作者:Koichi Okuda ; Kenichi Nakajima ; Chiemi Kitamura
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-78917-8
  • 出版社:Springer Nature
  • 摘要:The 123I-labeled meta-iodobenzylguanidine (MIBG) is an analogue of noradrenaline that can evaluate cardiac sympathetic activity in scintigraphy. Quantitative analysis of 123I-MIBG images has been verified in patients with heart failure and neurodegenerative diseases. However, quantitative results differ due to variations in scintigraphic imaging procedures. Here, we created and assessed the clinical feasibility of a calibration method for 123I-MIBG imaging. The characteristics of scintigraphic imaging systems were determined using an acrylic calibration phantom to generate a multicenter phantom imaging database. Calibration factors corresponding to the scintigraphic imaging procedures were calculated from the database and applied to a clinical study. The results of this study showed that the calibrated analysis eliminated inter-institutional differences among normal individuals. In summary, our standardization methodology for 123I-MIBG scintigraphy could provide the basis for improved diagnostic precision and better outcomes for patients.
  • 其他摘要:Abstract The 123 I-labeled meta-iodobenzylguanidine (MIBG) is an analogue of noradrenaline that can evaluate cardiac sympathetic activity in scintigraphy. Quantitative analysis of 123 I-MIBG images has been verified in patients with heart failure and neurodegenerative diseases. However, quantitative results differ due to variations in scintigraphic imaging procedures. Here, we created and assessed the clinical feasibility of a calibration method for 123 I-MIBG imaging. The characteristics of scintigraphic imaging systems were determined using an acrylic calibration phantom to generate a multicenter phantom imaging database. Calibration factors corresponding to the scintigraphic imaging procedures were calculated from the database and applied to a clinical study. The results of this study showed that the calibrated analysis eliminated inter-institutional differences among normal individuals. In summary, our standardization methodology for 123 I-MIBG scintigraphy could provide the basis for improved diagnostic precision and better outcomes for patients.
国家哲学社会科学文献中心版权所有