摘要:Performing functional magnetic resonance imaging (fMRI) scans of children can be a difficult task, as participants tend to move while being scanned. Head motion represents a significant confound in fMRI connectivity analyses. One approach to limit motion has been to use shorter MRI protocols, though this reduces the reliability of results. Hence, there is a need to implement methods to achieve high-quality, low-motion data while not sacrificing data quantity. Here we show that by using a mock scan protocol prior to a scan, in conjunction with other in-scan steps (weighted blanket and incentive system), it is possible to achieve low-motion fMRI data in pediatric participants (age range: 7–17 years old) undergoing a 60 min MRI session. We also observe that motion is low during the MRI protocol in a separate replication group of participants, including some with autism spectrum disorder. Collectively, the results indicate it is possible to conduct long scan protocols in difficult-to-scan populations and still achieve high-quality data, thus potentially allowing more reliable fMRI findings.
其他摘要:Abstract Performing functional magnetic resonance imaging (fMRI) scans of children can be a difficult task, as participants tend to move while being scanned. Head motion represents a significant confound in fMRI connectivity analyses. One approach to limit motion has been to use shorter MRI protocols, though this reduces the reliability of results. Hence, there is a need to implement methods to achieve high-quality, low-motion data while not sacrificing data quantity. Here we show that by using a mock scan protocol prior to a scan, in conjunction with other in-scan steps (weighted blanket and incentive system), it is possible to achieve low-motion fMRI data in pediatric participants (age range: 7–17 years old) undergoing a 60 min MRI session. We also observe that motion is low during the MRI protocol in a separate replication group of participants, including some with autism spectrum disorder. Collectively, the results indicate it is possible to conduct long scan protocols in difficult-to-scan populations and still achieve high-quality data, thus potentially allowing more reliable fMRI findings.