首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Emergence of disconnected clusters in heterogeneous complex systems
  • 本地全文:下载
  • 作者:István A. Kovács ; Róbert Juhász
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-020-78769-2
  • 出版社:Springer Nature
  • 摘要:Percolation theory dictates an intuitive picture depicting correlated regions in complex systems as densely connected clusters. While this picture might be adequate at small scales and apart from criticality, we show that highly correlated sites in complex systems can be inherently disconnected. This finding indicates a counter-intuitive organization of dynamical correlations, where functional similarity decouples from physical connectivity. We illustrate the phenomenon on the example of the disordered contact process (DCP) of infection spreading in heterogeneous systems. We apply numerical simulations and an asymptotically exact renormalization group technique (SDRG) in 1, 2 and 3 dimensional systems as well as in two-dimensional lattices with long-ranged interactions. We conclude that the critical dynamics is well captured by mostly one, highly correlated, but spatially disconnected cluster. Our findings indicate that at criticality the relevant, simultaneously infected sites typically do not directly interact with each other. Due to the similarity of the SDRG equations, our results hold also for the critical behavior of the disordered quantum Ising model, leading to quantum correlated, yet spatially disconnected, magnetic domains.
  • 其他摘要:Abstract Percolation theory dictates an intuitive picture depicting correlated regions in complex systems as densely connected clusters. While this picture might be adequate at small scales and apart from criticality, we show that highly correlated sites in complex systems can be inherently disconnected. This finding indicates a counter-intuitive organization of dynamical correlations, where functional similarity decouples from physical connectivity. We illustrate the phenomenon on the example of the disordered contact process (DCP) of infection spreading in heterogeneous systems. We apply numerical simulations and an asymptotically exact renormalization group technique (SDRG) in 1, 2 and 3 dimensional systems as well as in two-dimensional lattices with long-ranged interactions. We conclude that the critical dynamics is well captured by mostly one, highly correlated, but spatially disconnected cluster. Our findings indicate that at criticality the relevant, simultaneously infected sites typically do not directly interact with each other. Due to the similarity of the SDRG equations, our results hold also for the critical behavior of the disordered quantum Ising model, leading to quantum correlated, yet spatially disconnected, magnetic domains.
国家哲学社会科学文献中心版权所有