首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Learning fine-grained estimation of physiological states from coarse-grained labels by distribution restoration
  • 本地全文:下载
  • 作者:Zengyi Qin ; Jiansheng Chen ; Zhenyu Jiang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-79007-5
  • 出版社:Springer Nature
  • 摘要:Due to its importance in clinical science, the estimation of physiological states (e.g., the severity of pathological tremor) has aroused growing interest in machine learning community. While the physiological state is a continuous variable, its continuity is lost when the physiological state is quantized into a few discrete classes during recording and labeling. The discreteness introduces misalignment between the true value and its label, meaning that these labels are unfortunately imprecise and coarse-grained. Most previous work did not consider the inaccuracy and directly utilized the coarse labels to train the machine learning algorithms, whose predictions are also coarse-grained. In this work, we propose to learn a precise, fine-grained estimation of physiological states using these coarse-grained ground truths. Established on mathematical rigorous proof, we utilize imprecise labels to restore the probabilistic distribution of precise labels in an approximate order-preserving fashion, then the deep neural network learns from this distribution and offers fine-grained estimation. We demonstrate the effectiveness of our approach in assessing the pathological tremor in Parkinson’s Disease and estimating the systolic blood pressure from bioelectrical signals.
  • 其他摘要:Abstract Due to its importance in clinical science, the estimation of physiological states (e.g., the severity of pathological tremor) has aroused growing interest in machine learning community. While the physiological state is a continuous variable, its continuity is lost when the physiological state is quantized into a few discrete classes during recording and labeling. The discreteness introduces misalignment between the true value and its label, meaning that these labels are unfortunately imprecise and coarse-grained. Most previous work did not consider the inaccuracy and directly utilized the coarse labels to train the machine learning algorithms, whose predictions are also coarse-grained. In this work, we propose to learn a precise, fine-grained estimation of physiological states using these coarse-grained ground truths. Established on mathematical rigorous proof, we utilize imprecise labels to restore the probabilistic distribution of precise labels in an approximate order-preserving fashion, then the deep neural network learns from this distribution and offers fine-grained estimation. We demonstrate the effectiveness of our approach in assessing the pathological tremor in Parkinson’s Disease and estimating the systolic blood pressure from bioelectrical signals.
国家哲学社会科学文献中心版权所有