摘要:Professional dancers demonstrate an amazing ability to control their balance. However, little is known about how they coordinate their body segments for such superior control. In this study, we investigated how dancers coordinate body segments when a physical perturbation is given to their body. A custom-made machine was used to provide a short pulling impulse at the waist in the anterior direction to ten dancers and ten non-dancers. We used Uncontrolled Manifold analysis to quantify the variability in the task-relevant space and task-irrelevant space within the multi-dimensional space made up of individual segments’ centers of mass with a velocity adjustment. The dancers demonstrated greater utilization of redundant degrees of freedom (DoFs) supported by the greater task-irrelevant variability as compared to non-dancers. These findings suggest that long-term specialized dance training can improve the central nervous system’s ability to utilize the redundant DoFs in the whole-body system.
其他摘要:Abstract Professional dancers demonstrate an amazing ability to control their balance. However, little is known about how they coordinate their body segments for such superior control. In this study, we investigated how dancers coordinate body segments when a physical perturbation is given to their body. A custom-made machine was used to provide a short pulling impulse at the waist in the anterior direction to ten dancers and ten non-dancers. We used Uncontrolled Manifold analysis to quantify the variability in the task-relevant space and task-irrelevant space within the multi-dimensional space made up of individual segments’ centers of mass with a velocity adjustment. The dancers demonstrated greater utilization of redundant degrees of freedom (DoFs) supported by the greater task-irrelevant variability as compared to non-dancers. These findings suggest that long-term specialized dance training can improve the central nervous system’s ability to utilize the redundant DoFs in the whole-body system.