首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Effect of vessel enhancement filters on the repeatability of measurements obtained from widefield swept-source optical coherence tomography angiography
  • 本地全文:下载
  • 作者:Jimmy Hong ; Mengyuan Ke ; Bingyao Tan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-79281-3
  • 出版社:Springer Nature
  • 摘要:We assessed the inter-visit repeatability of 15 × 9-mm2 swept-source OCTA (SS-OCTA; PLEX Elite 9000, Carl Zeiss Meditec) metrics in 14 healthy participants. We analysed the perfusion density (PD) of large vessels, superficial capillary plexus (SCP), and deep capillary plexus (DCP) as well as choriocapillaris flow voids in 2 different regions: the macular region and peripheral region. Also, retinal plexus metrics were processed further using different filters (Hessian, Gabor and Bayesian) while choriocapillaris flow voids were calculated with 1 and 1.25 standard deviation (SD) thresholding algorithms. We found excellent repeatability in the perfusion densities of large vessels (ICC > 0.96). Perfusion densities varied with different filters in the macular region (SCP: 24.12–38.57% and DCP: 25.16–38.50%) and peripheral (SCP: 30.52–39.84% and DCP: 34.19–41.60%) regions. The ICCs were lower in the macular region compared to the peripheral region and lower for DCP than for SCP. For choriocapillaris flow voids, the 1.25 SD threshold resulted in fewer flow voids, while a good ICC (ICC > 0.81) was achieved using either threshold settings for flow void features in both regions. Our results suggest good repeatability of widefield SS-OCTA for the measurements of retinal perfusion density and choriocapillaris flow voids, but measurements from different filters should not be interchanged.
  • 其他摘要:Abstract We assessed the inter-visit repeatability of 15 × 9-mm 2 swept-source OCTA (SS-OCTA; PLEX Elite 9000, Carl Zeiss Meditec) metrics in 14 healthy participants. We analysed the perfusion density (PD) of large vessels, superficial capillary plexus (SCP), and deep capillary plexus (DCP) as well as choriocapillaris flow voids in 2 different regions: the macular region and peripheral region. Also, retinal plexus metrics were processed further using different filters (Hessian, Gabor and Bayesian) while choriocapillaris flow voids were calculated with 1 and 1.25 standard deviation (SD) thresholding algorithms. We found excellent repeatability in the perfusion densities of large vessels (ICC > 0.96). Perfusion densities varied with different filters in the macular region (SCP: 24.12–38.57% and DCP: 25.16–38.50%) and peripheral (SCP: 30.52–39.84% and DCP: 34.19–41.60%) regions. The ICCs were lower in the macular region compared to the peripheral region and lower for DCP than for SCP. For choriocapillaris flow voids, the 1.25 SD threshold resulted in fewer flow voids, while a good ICC (ICC > 0.81) was achieved using either threshold settings for flow void features in both regions. Our results suggest good repeatability of widefield SS-OCTA for the measurements of retinal perfusion density and choriocapillaris flow voids, but measurements from different filters should not be interchanged.
国家哲学社会科学文献中心版权所有