首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii
  • 本地全文:下载
  • 作者:Seongsu Kang ; Seungjib Jeon ; Seungcheol Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-78968-x
  • 出版社:Springer Nature
  • 摘要:Recent technical advances related to the CRISPR/Cas9-based genome editing system have enabled sophisticated genome editing in microalgae. Although the demand for research on genome editing in microalgae has increased over time, methodological research has not been established to date for the delivery of a ribonucleoprotein (Cas9/sgRNA complex) using a cell penetrating peptide into microalgal cell lines. Here, we present a ribonucleoprotein delivery system for Chlamydomonas reinhardtii mediated by the cell penetrating peptide pVEC (LLIILRRRIRKQAHAHSK) which is in a non-covalent form. Using this technically simple method, the ribonucleoprotein was successfully delivered into C. reinhardtii. Gene Maa7 and FKB12 were disrupted, and their distinguishing patterns of Indel mutations were analyzed with the observation of several insertions of sequences not originating from the genome DNA, such as chloroplast DNA, into the expected loci. In addition, the cytotoxicity of Cas9 and the ribonucleoprotein was investigated according to the concentration and time in the algal cells. It was observed that Cas9 alone without the sgRNA induces a more severe cytotoxicity compared to the ribonucleoprotein. Our study will not only contribute to algal cell biology and its genetic engineering for further applications involving various organisms but will also provide a deeper understating of the basic science of the CRISPR/Cas9 system.
  • 其他摘要:Abstract Recent technical advances related to the CRISPR/Cas9-based genome editing system have enabled sophisticated genome editing in microalgae. Although the demand for research on genome editing in microalgae has increased over time, methodological research has not been established to date for the delivery of a ribonucleoprotein (Cas9/sgRNA complex) using a cell penetrating peptide into microalgal cell lines. Here, we present a ribonucleoprotein delivery system for Chlamydomonas reinhardtii mediated by the cell penetrating peptide pVEC (LLIILRRRIRKQAHAHSK) which is in a non-covalent form. Using this technically simple method, the ribonucleoprotein was successfully delivered into C. reinhardtii . Gene Maa7 and FKB12 were disrupted, and their distinguishing patterns of Indel mutations were analyzed with the observation of several insertions of sequences not originating from the genome DNA, such as chloroplast DNA, into the expected loci. In addition, the cytotoxicity of Cas9 and the ribonucleoprotein was investigated according to the concentration and time in the algal cells. It was observed that Cas9 alone without the sgRNA induces a more severe cytotoxicity compared to the ribonucleoprotein. Our study will not only contribute to algal cell biology and its genetic engineering for further applications involving various organisms but will also provide a deeper understating of the basic science of the CRISPR/Cas9 system.
国家哲学社会科学文献中心版权所有