首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Independent control of cocontraction and reciprocal activity during goal-directed reaching in muscle space
  • 本地全文:下载
  • 作者:Atsushi Takagi ; Hiroyuki Kambara ; Yasuharu Koike
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-79526-1
  • 出版社:Springer Nature
  • 摘要:The movement in a joint is facilitated by a pair of muscles that pull in opposite directions. The difference in the pair’s muscle force or reciprocal activity results in joint torque, while the overlapping muscle force or the cocontraction is related to the joint’s stiffness. Cocontraction knowingly adapts implicitly over a number of movements, but it is unclear whether the central nervous system can actively regulate cocontraction in a goal-directed manner in a short span of time. We developed a muscle interface where a cursor’s horizontal position was determined by the reciprocal activity of the shoulder flexion–extension muscle pair, while the vertical position was controlled by its cocontraction. Participants made goal-directed movements to single and via-point targets in the two-dimensional muscle space, learning to move the cursor along the shortest path. Simulations using an optimal control framework suggest that the reciprocal activity and the cocontraction may be controlled independently by the CNS, albeit at a rate orders of magnitude slower than the muscle’s maximal activation speed.
  • 其他摘要:Abstract The movement in a joint is facilitated by a pair of muscles that pull in opposite directions. The difference in the pair’s muscle force or reciprocal activity results in joint torque, while the overlapping muscle force or the cocontraction is related to the joint’s stiffness. Cocontraction knowingly adapts implicitly over a number of movements, but it is unclear whether the central nervous system can actively regulate cocontraction in a goal-directed manner in a short span of time. We developed a muscle interface where a cursor’s horizontal position was determined by the reciprocal activity of the shoulder flexion–extension muscle pair, while the vertical position was controlled by its cocontraction. Participants made goal-directed movements to single and via-point targets in the two-dimensional muscle space, learning to move the cursor along the shortest path. Simulations using an optimal control framework suggest that the reciprocal activity and the cocontraction may be controlled independently by the CNS, albeit at a rate orders of magnitude slower than the muscle’s maximal activation speed.
国家哲学社会科学文献中心版权所有