首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Screening of native microalgae species for carbon fixation at the vicinity of Malaysian coal-fired power plant
  • 本地全文:下载
  • 作者:Liyana Yahya ; Razif Harun ; Luqman Chuah Abdullah
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-020-79316-9
  • 出版社:Springer Nature
  • 摘要:Global warming has become a serious issue nowadays as the trend of CO2 emission is increasing by years. In Malaysia, the electricity and energy sector contributed a significant amount to the nation’s CO2 emission due to fossil fuel use. Many research works have been carried out to mitigate this issue, including carbon capture and utilization (CCUS) technology and biological carbon fixation by microalgae. This study makes a preliminary effort to screen native microalgae species in the Malaysian coal-fired power plant’s surrounding towards carbon fixation ability. Three dominant species, including Nannochloropsis sp., Tetraselmis sp., and Isochrysis sp. were identified and tested in the laboratory under ambient and pure CO2 condition to assess their growth and CO2 fixation ability. The results indicate Isochrysis sp. as the superior carbon fixer against other species. In continuation, the optimization study using Response Surface Methodology (RSM) was carried out to optimize the operating conditions of Isochrysis sp. using a customized lab-scale photobioreactor under simulated flue gas exposure. This species was further acclimatized and tested under actual flue gas generated by the power plant. Isochrysis sp. had shown its capability as a carbon fixer with CO2 fixation rate of 0.35 gCO2/L day under actual coal-fired flue gas exposure after cycles of acclimatization phase. This work is the first to demonstrate indigenous microalgae species' ability as a carbon fixer under Malaysian coal-fired flue gas exposure. Thus, the findings shall be useful in exploring the microalgae potential as a biological agent for carbon emission mitigation from power plants more sustainably.
  • 其他摘要:Abstract Global warming has become a serious issue nowadays as the trend of CO 2 emission is increasing by years. In Malaysia, the electricity and energy sector contributed a significant amount to the nation’s CO 2 emission due to fossil fuel use. Many research works have been carried out to mitigate this issue, including carbon capture and utilization (CCUS) technology and biological carbon fixation by microalgae. This study makes a preliminary effort to screen native microalgae species in the Malaysian coal-fired power plant’s surrounding towards carbon fixation ability. Three dominant species, including Nannochloropsis sp., Tetraselmis sp., and Isochrysis sp. were identified and tested in the laboratory under ambient and pure CO 2 condition to assess their growth and CO 2 fixation ability. The results indicate Isochrysis sp. as the superior carbon fixer against other species. In continuation, the optimization study using Response Surface Methodology (RSM) was carried out to optimize the operating conditions of Isochrysis sp. using a customized lab-scale photobioreactor under simulated flue gas exposure. This species was further acclimatized and tested under actual flue gas generated by the power plant. Isochrysis sp. had shown its capability as a carbon fixer with CO 2 fixation rate of 0.35 gCO 2 /L day under actual coal-fired flue gas exposure after cycles of acclimatization phase. This work is the first to demonstrate indigenous microalgae species' ability as a carbon fixer under Malaysian coal-fired flue gas exposure. Thus, the findings shall be useful in exploring the microalgae potential as a biological agent for carbon emission mitigation from power plants more sustainably.
国家哲学社会科学文献中心版权所有