首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Nitric oxide regulates perylenequinones biosynthesis in Shiraia bambusicola S4201 induced by hydrogen peroxide
  • 本地全文:下载
  • 作者:Ning Zhao ; Yingying Yu ; Yunxia Yue
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:2365
  • DOI:10.1038/s41598-021-81990-2
  • 出版社:Springer Nature
  • 摘要:Abstract Shiraia bambusicola has been used as a traditional Chinese medicine for a long history. Its major medicinal active metabolites are perylenequinones, including hypocrellin A, elsinochrome A and so on. At present, the fermentation yield of perylenequinones is low, and its complex biosynthesis and regulatory pathways are still unclear. In this study, nitric oxide, as a downstream signal molecule of hydrogen peroxide, regulates the biosynthesis of perylenequinones. Exogenous addition of 0.01 mM sodium nitroprusside (nitric oxide donor) can promote perylenequinones production by 156% compared with the control. Further research found that hydrogen peroxide and nitric oxide increased the transcriptional level of the biosynthetic genes of hypocrellin A. The results showed that nitric oxide is involved in the biosynthesis and regulation of perylenequinones in Shiraia bambusicola as a signal molecule. In the future, the yield of perylenequinones can be increased by adding exogenous nitric oxide in fermentation.
  • 其他摘要:Abstract Shiraia bambusicola has been used as a traditional Chinese medicine for a long history. Its major medicinal active metabolites are perylenequinones, including hypocrellin A, elsinochrome A and so on. At present, the fermentation yield of perylenequinones is low, and its complex biosynthesis and regulatory pathways are still unclear. In this study, nitric oxide, as a downstream signal molecule of hydrogen peroxide, regulates the biosynthesis of perylenequinones. Exogenous addition of 0.01 mM sodium nitroprusside (nitric oxide donor) can promote perylenequinones production by 156% compared with the control. Further research found that hydrogen peroxide and nitric oxide increased the transcriptional level of the biosynthetic genes of hypocrellin A. The results showed that nitric oxide is involved in the biosynthesis and regulation of perylenequinones in Shiraia bambusicola as a signal molecule. In the future, the yield of perylenequinones can be increased by adding exogenous nitric oxide in fermentation.
国家哲学社会科学文献中心版权所有