首页    期刊浏览 2025年07月18日 星期五
登录注册

文章基本信息

  • 标题:The effects of bone marrow stem and progenitor cell seeding on urinary bladder tissue regeneration
  • 本地全文:下载
  • 作者:Matthew I. Bury ; Natalie J. Fuller ; Renea M. Sturm
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:2322
  • DOI:10.1038/s41598-021-81939-5
  • 出版社:Springer Nature
  • 摘要:Abstract Complications associated with urinary bladder augmentation provide the motivation to delineate alternative bladder tissue regenerative engineering strategies. We describe the results of varying the proportion of bone marrow (BM) mesenchymal stem cells (MSCs) to CD34   hematopoietic stem/progenitor cells (HSPCs) co-seeded onto synthetic POC [poly(1,8 octamethylene citrate)] or small intestinal submucosa (SIS) scaffolds and their contribution to bladder tissue regeneration. Human BM MSCs and CD34   HSPCs were co-seeded onto POC or SIS scaffolds at cell ratios of 50 K CD34   HSPCs/15 K MSCs (CD34-50/MSC15); 50 K CD34   HSPCs/30 K MSCs (CD34-50/MSC30); 100 K CD34   HSPCs/15 K MSCs (CD34-100/MSC15); and 100 K CD34   HSPCs/30 K MSCs (CD34-100/MSC30), in male (M/POC; M/SIS; n = 6/cell seeded scaffold) and female (F/POC; F/SIS; n = 6/cell seeded scaffold) nude rats (n = 96 total animals). Explanted scaffold/composite augmented bladder tissue underwent quantitative morphometrics following histological staining taking into account the presence (S ) or absence (S−) of bladder stones. Urodynamic studies were also performed. Regarding regenerated tissue vascularization, an upward shift was detected for some higher seeded density groups including the CD34-100/MSC30 groups [F/POC S− CD34-100/MSC30 230.5 ± 12.4; F/POC S CD34-100/MSC30 245.6 ± 23.4; F/SIS S CD34-100/MSC30 278.1; F/SIS S− CD34-100/MSC30 187.4 ± 8.1; (vessels/mm 2 )]. Similarly, a potential trend toward increased levels of percent muscle (≥ 45% muscle) with higher seeding densities was observed for F/POC S− [CD34-50/MSC30 48.8 ± 2.2; CD34-100/MSC15 53.9 ± 2.8; CD34-100/MSC30 50.7 ± 1.7] and for F/SIS S− [CD34-100/MSC15 47.1 ± 1.6; CD34-100/MSC30 51.2 ± 2.3]. As a potential trend, higher MSC/CD34   HSPCs cell seeding densities generally tended to increase levels of tissue vascularization and aided with bladder muscle growth. Data suggest that increasing cell seeding density has the potential to enhance bladder tissue regeneration in our model.
  • 其他摘要:Abstract Complications associated with urinary bladder augmentation provide the motivation to delineate alternative bladder tissue regenerative engineering strategies. We describe the results of varying the proportion of bone marrow (BM) mesenchymal stem cells (MSCs) to CD34   hematopoietic stem/progenitor cells (HSPCs) co-seeded onto synthetic POC [poly(1,8 octamethylene citrate)] or small intestinal submucosa (SIS) scaffolds and their contribution to bladder tissue regeneration. Human BM MSCs and CD34   HSPCs were co-seeded onto POC or SIS scaffolds at cell ratios of 50 K CD34   HSPCs/15 K MSCs (CD34-50/MSC15); 50 K CD34   HSPCs/30 K MSCs (CD34-50/MSC30); 100 K CD34   HSPCs/15 K MSCs (CD34-100/MSC15); and 100 K CD34   HSPCs/30 K MSCs (CD34-100/MSC30), in male (M/POC; M/SIS; n = 6/cell seeded scaffold) and female (F/POC; F/SIS; n = 6/cell seeded scaffold) nude rats (n = 96 total animals). Explanted scaffold/composite augmented bladder tissue underwent quantitative morphometrics following histological staining taking into account the presence (S ) or absence (S−) of bladder stones. Urodynamic studies were also performed. Regarding regenerated tissue vascularization, an upward shift was detected for some higher seeded density groups including the CD34-100/MSC30 groups [F/POC S− CD34-100/MSC30 230.5 ± 12.4; F/POC S CD34-100/MSC30 245.6 ± 23.4; F/SIS S CD34-100/MSC30 278.1; F/SIS S− CD34-100/MSC30 187.4 ± 8.1; (vessels/mm 2 )]. Similarly, a potential trend toward increased levels of percent muscle (≥ 45% muscle) with higher seeding densities was observed for F/POC S− [CD34-50/MSC30 48.8 ± 2.2; CD34-100/MSC15 53.9 ± 2.8; CD34-100/MSC30 50.7 ± 1.7] and for F/SIS S− [CD34-100/MSC15 47.1 ± 1.6; CD34-100/MSC30 51.2 ± 2.3]. As a potential trend, higher MSC/CD34   HSPCs cell seeding densities generally tended to increase levels of tissue vascularization and aided with bladder muscle growth. Data suggest that increasing cell seeding density has the potential to enhance bladder tissue regeneration in our model.
国家哲学社会科学文献中心版权所有