首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Elucidation of the mechanism of subunit exchange in αB crystallin oligomers
  • 本地全文:下载
  • 作者:Rintaro Inoue ; Yusuke Sakamaki ; Takumi Takata
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:2555
  • DOI:10.1038/s41598-021-82250-z
  • 出版社:Springer Nature
  • 摘要:Abstract AlphaB crystallin (αB-crystallin) is a key protein for maintaining the long-term transparency of the eye lens. In the eye lens, αB-crystallin is a “dynamical” oligomer regulated by subunit exchange between the oligomers. To elucidate the unsettled mechanism of subunit exchange in αB-crystallin oligomers, the study was carried out at two different protein concentrations, 28.5 mg/mL (dense sample) and 0.45 mg/mL (dilute sample), through inverse contrast matching small-angle neutron scattering. Interestingly, the exchange rate of the dense sample was the same as that of the dilute sample. From analytical ultracentrifuge measurements, the coexistence of small molecular weight components and oligomers was detected, regardless of the protein concentration. The model proposed that subunit exchange could proceed through the assistance of monomers and other small oligomers; the key mechanism is attaching/detaching monomers and other small oligomers to/from oligomers. Moreover, this model successfully reproduced the experimental results for both dense and dilute solutions. It is concluded that the monomer and other small oligomers attaching/detaching mainly regulates the subunit exchange in αB-crystallin oligomer.
  • 其他摘要:Abstract AlphaB crystallin (αB-crystallin) is a key protein for maintaining the long-term transparency of the eye lens. In the eye lens, αB-crystallin is a “dynamical” oligomer regulated by subunit exchange between the oligomers. To elucidate the unsettled mechanism of subunit exchange in αB-crystallin oligomers, the study was carried out at two different protein concentrations, 28.5 mg/mL (dense sample) and 0.45 mg/mL (dilute sample), through inverse contrast matching small-angle neutron scattering. Interestingly, the exchange rate of the dense sample was the same as that of the dilute sample. From analytical ultracentrifuge measurements, the coexistence of small molecular weight components and oligomers was detected, regardless of the protein concentration. The model proposed that subunit exchange could proceed through the assistance of monomers and other small oligomers; the key mechanism is attaching/detaching monomers and other small oligomers to/from oligomers. Moreover, this model successfully reproduced the experimental results for both dense and dilute solutions. It is concluded that the monomer and other small oligomers attaching/detaching mainly regulates the subunit exchange in αB-crystallin oligomer.
国家哲学社会科学文献中心版权所有