首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Vibration direction sensitivity of the cochlea with bone conduction stimulation in guinea pigs
  • 本地全文:下载
  • 作者:Mingduo Zhao ; Anders Fridberger ; Stefan Stenfelt
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:2855
  • DOI:10.1038/s41598-021-82268-3
  • 出版社:Springer Nature
  • 摘要:Abstract Sound and vibrations that cause the skull bone to vibrate can be heard as ordinary sounds and this is termed hearing by bone conduction (BC). Not all mechanisms that causes a skull vibration to result in BC hearing are known, and one such unknown is how the direction of the vibration influences BC hearing. This direction sensitivity was investigated by providing BC stimulation in five different directions at the vertex of the guinea pig skull. The hearing thresholds for BC stimulation was obtained in the frequency range of 2 to 20 kHz by measurements of compound action potential. During the stimulation by BC, the vibration of the cochlear promontory was measured with a three-dimensional laser Doppler vibrometer resulting in a set of unique three-dimensional velocity magnitude combinations for each threshold estimation. The sets of three-dimensional velocity magnitude at threshold were used to investigate nine different predictors of BC hearing based on cochlear promontory velocity magnitudes, six single direction (x, y and z directions in isolation, the normal to the stapes footplate, the oval to round window direction, and the cochlear base to apex direction), one linear combination of the three dimension velocity magnitudes, one square-rooted sum of the squared velocity magnitudes, and one sum of the weighted three dimensional velocity magnitudes based on a restricted minimum square error (MSE) estimation. The MSE gave the best predictions of the hearing threshold based on the cochlear promontory velocity magnitudes while using only a single direction gave the worst predictions of the hearing thresholds overall. According to the MSE estimation, at frequencies up to 8 kHz the vibration direction between the right and left side gave the greatest contribution to BC hearing in the guinea pig while at the highest frequencies measured, 16 and 20 kHz, the anteroposterior direction of the guinea pig head gave the greatest contribution.
  • 其他摘要:Abstract Sound and vibrations that cause the skull bone to vibrate can be heard as ordinary sounds and this is termed hearing by bone conduction (BC). Not all mechanisms that causes a skull vibration to result in BC hearing are known, and one such unknown is how the direction of the vibration influences BC hearing. This direction sensitivity was investigated by providing BC stimulation in five different directions at the vertex of the guinea pig skull. The hearing thresholds for BC stimulation was obtained in the frequency range of 2 to 20 kHz by measurements of compound action potential. During the stimulation by BC, the vibration of the cochlear promontory was measured with a three-dimensional laser Doppler vibrometer resulting in a set of unique three-dimensional velocity magnitude combinations for each threshold estimation. The sets of three-dimensional velocity magnitude at threshold were used to investigate nine different predictors of BC hearing based on cochlear promontory velocity magnitudes, six single direction (x, y and z directions in isolation, the normal to the stapes footplate, the oval to round window direction, and the cochlear base to apex direction), one linear combination of the three dimension velocity magnitudes, one square-rooted sum of the squared velocity magnitudes, and one sum of the weighted three dimensional velocity magnitudes based on a restricted minimum square error (MSE) estimation. The MSE gave the best predictions of the hearing threshold based on the cochlear promontory velocity magnitudes while using only a single direction gave the worst predictions of the hearing thresholds overall. According to the MSE estimation, at frequencies up to 8 kHz the vibration direction between the right and left side gave the greatest contribution to BC hearing in the guinea pig while at the highest frequencies measured, 16 and 20 kHz, the anteroposterior direction of the guinea pig head gave the greatest contribution.
国家哲学社会科学文献中心版权所有