首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Temperature and species-dependent regulation of browning in retrobulbar fat
  • 本地全文:下载
  • 作者:Fatemeh Rajaii ; Dong Won Kim ; Jianbo Pan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3094
  • DOI:10.1038/s41598-021-82672-9
  • 出版社:Springer Nature
  • 摘要:Abstract Retrobulbar fat deposits surround the posterior retina and optic nerve head, but their function and origin are obscure. We report that mouse retrobulbar fat is a neural crest-derived tissue histologically and transcriptionally resembles interscapular brown fat. In contrast, human retrobulbar fat closely resembles white adipose tissue. Retrobulbar fat is also brown in other rodents, which are typically housed at temperatures below thermoneutrality, but is white in larger animals. We show that retrobulbar fat in mice housed at thermoneutral temperature show reduced expression of the brown fat marker Ucp1 , and histological properties intermediate between white and brown fat. We conclude that retrobulbar fat can potentially serve as a site of active thermogenesis, that this capability is both temperature and species-dependent, and that this may facilitate regulation of intraocular temperature.
  • 其他摘要:Abstract Retrobulbar fat deposits surround the posterior retina and optic nerve head, but their function and origin are obscure. We report that mouse retrobulbar fat is a neural crest-derived tissue histologically and transcriptionally resembles interscapular brown fat. In contrast, human retrobulbar fat closely resembles white adipose tissue. Retrobulbar fat is also brown in other rodents, which are typically housed at temperatures below thermoneutrality, but is white in larger animals. We show that retrobulbar fat in mice housed at thermoneutral temperature show reduced expression of the brown fat marker Ucp1 , and histological properties intermediate between white and brown fat. We conclude that retrobulbar fat can potentially serve as a site of active thermogenesis, that this capability is both temperature and species-dependent, and that this may facilitate regulation of intraocular temperature.
国家哲学社会科学文献中心版权所有