首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:Ensemble bias correction of climate simulations: preserving internal variability
  • 本地全文:下载
  • 作者:Pradeebane Vaittinada Ayar ; Mathieu Vrac ; Alain Mailhot
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3098
  • DOI:10.1038/s41598-021-82715-1
  • 出版社:Springer Nature
  • 摘要:Abstract Climate simulations often need to be adjusted (i.e., corrected) before any climate change impacts studies. However usual bias correction approaches do not differentiate the bias from the different uncertainties of the climate simulations: scenario uncertainty, model uncertainty and internal variability. In particular, in the case of a multi-run ensemble of simulations (i.e., multiple runs of one model), correcting, as usual, each member separately, would mix up the model biases with its internal variability. In this study, two ensemble bias correction approaches preserving the internal variability of the initial ensemble are proposed. These “Ensemble bias correction” (EnsBC) approaches are assessed and compared to the approach where each ensemble member is corrected separately, using precipitation and temperature series at two locations in North America from a multi-member regional climate ensemble. The preservation of the internal variability is assessed in terms of monthly mean and hourly quantiles. Besides, the preservation of the internal variability in a changing climate is evaluated. Results show that, contrary to the usual approach, the proposed ensemble bias correction approaches adequately preserve the internal variability even in changing climate. Moreover, the climate change signal given by the original ensemble is also conserved by both approaches.
  • 其他摘要:Abstract Climate simulations often need to be adjusted (i.e., corrected) before any climate change impacts studies. However usual bias correction approaches do not differentiate the bias from the different uncertainties of the climate simulations: scenario uncertainty, model uncertainty and internal variability. In particular, in the case of a multi-run ensemble of simulations (i.e., multiple runs of one model), correcting, as usual, each member separately, would mix up the model biases with its internal variability. In this study, two ensemble bias correction approaches preserving the internal variability of the initial ensemble are proposed. These “Ensemble bias correction” (EnsBC) approaches are assessed and compared to the approach where each ensemble member is corrected separately, using precipitation and temperature series at two locations in North America from a multi-member regional climate ensemble. The preservation of the internal variability is assessed in terms of monthly mean and hourly quantiles. Besides, the preservation of the internal variability in a changing climate is evaluated. Results show that, contrary to the usual approach, the proposed ensemble bias correction approaches adequately preserve the internal variability even in changing climate. Moreover, the climate change signal given by the original ensemble is also conserved by both approaches.
国家哲学社会科学文献中心版权所有