首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications
  • 本地全文:下载
  • 作者:Sami Ullah Khan ; Kamel Al-Khaled ; A. Aldabesh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3331
  • DOI:10.1038/s41598-021-82209-0
  • 出版社:Springer Nature
  • 摘要:Abstract On the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed magnetized couple stress nanoparticles flow by involving narrative flow characteristics namely activation energy, chemical reaction and radiation features. The accelerated flow is organized on the periodically porous stretched configuration. The heat performances are evaluated via famous Buongiorno’s model which successfully reflects the important features of thermophoretic and Brownian motion. The composed fluid model is based on the governing equations of momentum, energy, nanoparticles concentration and motile microorganisms. The dimensionless problem has been solved analytically via homotopic procedure where the convergence of results is carefully examined. The interesting graphical description for the distribution of velocity, heat transfer of nanoparticles, concentration pattern and gyrotactic microorganism significance are presented with relevant physical significance. The variation in wall shear stress is also graphically underlined which shows an interesting periodic oscillation near the flow domain. The numerical interpretation for examining the heat mass and motile density transfer rate is presented in tubular form.
  • 其他摘要:Abstract On the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed magnetized couple stress nanoparticles flow by involving narrative flow characteristics namely activation energy, chemical reaction and radiation features. The accelerated flow is organized on the periodically porous stretched configuration. The heat performances are evaluated via famous Buongiorno’s model which successfully reflects the important features of thermophoretic and Brownian motion. The composed fluid model is based on the governing equations of momentum, energy, nanoparticles concentration and motile microorganisms. The dimensionless problem has been solved analytically via homotopic procedure where the convergence of results is carefully examined. The interesting graphical description for the distribution of velocity, heat transfer of nanoparticles, concentration pattern and gyrotactic microorganism significance are presented with relevant physical significance. The variation in wall shear stress is also graphically underlined which shows an interesting periodic oscillation near the flow domain. The numerical interpretation for examining the heat mass and motile density transfer rate is presented in tubular form.
国家哲学社会科学文献中心版权所有