首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Automated diagnostic support system with deep learning algorithms for distinction of Philadelphia chromosome-negative myeloproliferative neoplasms using peripheral blood specimen
  • 本地全文:下载
  • 作者:Konobu Kimura ; Tomohiko Ai ; Yuki Horiuchi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:3367
  • DOI:10.1038/s41598-021-82826-9
  • 出版社:Springer Nature
  • 摘要:Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs) such as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis are characterized by abnormal proliferation of mature bone marrow cell lineages. Since various non-hematologic disorders can also cause leukocytosis, thrombocytosis and polycythemia, the detection of abnormal peripheral blood cells is essential for the diagnostic screening of Ph-negative MPNs. We sought to develop an automated diagnostic support system of Ph-negative MPNs. Our strategy was to combine the complete blood cell count and research parameters obtained by an automated hematology analyzer (Sysmex XN-9000) with morphological parameters that were extracted using a convolutional neural network deep learning system equipped with an Extreme Gradient Boosting (XGBoost)-based decision-making algorithm. The developed system showed promising performance in the differentiation of PV, ET, and MF with high accuracy when compared with those of the human diagnoses, namely: > 90% sensitivity and > 90% specificity. The calculated area under the curve of the ROC curves were 0.990, 0.967, and 0.974 for PV, ET, MF, respectively. This study is a step toward establishing a universal automated diagnostic system for all types of hematology disorders.
  • 其他摘要:Abstract Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs) such as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis are characterized by abnormal proliferation of mature bone marrow cell lineages. Since various non-hematologic disorders can also cause leukocytosis, thrombocytosis and polycythemia, the detection of abnormal peripheral blood cells is essential for the diagnostic screening of Ph-negative MPNs. We sought to develop an automated diagnostic support system of Ph-negative MPNs. Our strategy was to combine the complete blood cell count and research parameters obtained by an automated hematology analyzer (Sysmex XN-9000) with morphological parameters that were extracted using a convolutional neural network deep learning system equipped with an Extreme Gradient Boosting (XGBoost)-based decision-making algorithm. The developed system showed promising performance in the differentiation of PV, ET, and MF with high accuracy when compared with those of the human diagnoses, namely: > 90% sensitivity and > 90% specificity. The calculated area under the curve of the ROC curves were 0.990, 0.967, and 0.974 for PV, ET, MF, respectively. This study is a step toward establishing a universal automated diagnostic system for all types of hematology disorders.
国家哲学社会科学文献中心版权所有