首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Kar9 symmetry breaking alone is insufficient to ensure spindle alignment
  • 本地全文:下载
  • 作者:Miram Meziane ; Rachel Genthial ; Jackie Vogel
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1
  • DOI:10.1038/s41598-021-83136-w
  • 出版社:Springer Nature
  • 摘要:Abstract Spindle positioning must be tightly regulated to ensure asymmetric cell divisions are successful. In budding yeast, spindle positioning is mediated by the asymmetric localization of microtubule   end tracking protein Kar9. Kar9 asymmetry is believed to be essential for spindle alignment. However, the temporal correlation between symmetry breaking and spindle alignment has not been measured. Here, we establish a method of quantifying Kar9 symmetry breaking and find that Kar9 asymmetry is not well coupled with stable spindle alignment. We report the spindles are not aligned in the majority of asymmetric cells. Rather, stable alignment is correlated with Kar9 residence in the bud, regardless of symmetry state. Our findings suggest that Kar9 asymmetry alone is insufficient for stable alignment and reveal a possible role for Swe1 in regulating Kar9 residence in the bud.
  • 其他摘要:Abstract Spindle positioning must be tightly regulated to ensure asymmetric cell divisions are successful. In budding yeast, spindle positioning is mediated by the asymmetric localization of microtubule   end tracking protein Kar9. Kar9 asymmetry is believed to be essential for spindle alignment. However, the temporal correlation between symmetry breaking and spindle alignment has not been measured. Here, we establish a method of quantifying Kar9 symmetry breaking and find that Kar9 asymmetry is not well coupled with stable spindle alignment. We report the spindles are not aligned in the majority of asymmetric cells. Rather, stable alignment is correlated with Kar9 residence in the bud, regardless of symmetry state. Our findings suggest that Kar9 asymmetry alone is insufficient for stable alignment and reveal a possible role for Swe1 in regulating Kar9 residence in the bud.
国家哲学社会科学文献中心版权所有