首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Uncovering the superior corrosion resistance of iron made via ancient Indian iron-making practice
  • 本地全文:下载
  • 作者:Deepak Dwivedi ; Jitendra P. Mata ; Filomena Salvemini
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1
  • DOI:10.1038/s41598-021-81918-w
  • 出版社:Springer Nature
  • 摘要:Abstract Ancient Indian iron artefacts have always fascinated researchers due to their excellent corrosion resistance, but the scientific explanation of this feature remains to be elucidated. We have investigated corrosion resistance of iron manufactured according to traditional metallurgical processes by the Indian tribes called ‘Agaria’. Iron samples were recovered from central India (Aamadandh, Korba district, Chhattisgarh). Iron artefacts are investigated using a range of correlative microscopic, spectroscopic, diffraction and tomographic techniques to postulate the hidden mechanisms of superlative corrosion resistance. The importance of manufacturing steps, ingredients involved in Agaria’s iron making process, and post-metal treatment using metal-working operation called hot hammering (forging) is highlighted. This study also hypothesizes the probable protective mechanisms of corrosion resistance of iron. Findings are expected to have a broad impact across multiple disciplines such as archaeology, metallurgy and materials science.
  • 其他摘要:Abstract Ancient Indian iron artefacts have always fascinated researchers due to their excellent corrosion resistance, but the scientific explanation of this feature remains to be elucidated. We have investigated corrosion resistance of iron manufactured according to traditional metallurgical processes by the Indian tribes called ‘Agaria’. Iron samples were recovered from central India (Aamadandh, Korba district, Chhattisgarh). Iron artefacts are investigated using a range of correlative microscopic, spectroscopic, diffraction and tomographic techniques to postulate the hidden mechanisms of superlative corrosion resistance. The importance of manufacturing steps, ingredients involved in Agaria’s iron making process, and post-metal treatment using metal-working operation called hot hammering (forging) is highlighted. This study also hypothesizes the probable protective mechanisms of corrosion resistance of iron. Findings are expected to have a broad impact across multiple disciplines such as archaeology, metallurgy and materials science.
国家哲学社会科学文献中心版权所有