首页    期刊浏览 2024年08月31日 星期六
登录注册

文章基本信息

  • 标题:The conditional deletion of steroidogenic factor 1 (Nr5a1) in Sox9-Cre mice compromises testis differentiation
  • 本地全文:下载
  • 作者:Yayoi Ikeda ; Ayako Tagami ; Mamiko Maekawa
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:4486
  • DOI:10.1038/s41598-021-84095-y
  • 出版社:Springer Nature
  • 摘要:Abstract Steroidogenic factor 1 (NR5A1) is essential for gonadal development. To study the importance of NR5A1 during early gonadal sex differentiation, we generated Sox9-Cre - Nr5a1 conditional knockout (cKO) mice: Sox9-Cre;Nr5a1 flox/flox and Sox9-Cre;Nr5a1 flox/− mice. Double-immunostaining for NR5A1 and AMH revealed silenced NR5A1 in Sertoli cells and reduced AMH cells in the gonads of XY Sox9-Cre - Nr5a1 cKO mice between embryonic days 12.5 (E12.5) and E14.5. Double-immunostaining for SOX9 and FOXL2 further indicated an early block in Sertoli cells and ectopic granulosa cell differentiation. The number of cells expressing the Leydig cell marker 3βHSD obviously reduced in the gonads of XY Sox9-Cre;Nr5a1 flox/− but not Sox9-Cre;Nr5a1 flox/flox mice at E15.5. The presence of STRA8 cells indicated that germ cells entered meiosis in the gonads of XY Sox9-Cre - Nr5a1 cKO mice. The results of qRT-PCR revealed remarkably reduced and elevated levels of testis and ovary markers, respectively, in the gonads of XY Sox9-Cre - Nr5a1 cKO mice at E12.5‒E13.5. These data suggested that the loss of Nr5a1 abrogates the testicular pathway and induces the ectopic ovarian pathway, resulting in postnatal partial/complete male-to-female gonadal sex reversal. Our findings provide evidence for the critical role of NR5A1 in murine gonadal sex determination in vivo.
  • 其他摘要:Abstract Steroidogenic factor 1 (NR5A1) is essential for gonadal development. To study the importance of NR5A1 during early gonadal sex differentiation, we generated Sox9-Cre - Nr5a1 conditional knockout (cKO) mice: Sox9-Cre;Nr5a1 flox/flox and Sox9-Cre;Nr5a1 flox/− mice. Double-immunostaining for NR5A1 and AMH revealed silenced NR5A1 in Sertoli cells and reduced AMH cells in the gonads of XY Sox9-Cre - Nr5a1 cKO mice between embryonic days 12.5 (E12.5) and E14.5. Double-immunostaining for SOX9 and FOXL2 further indicated an early block in Sertoli cells and ectopic granulosa cell differentiation. The number of cells expressing the Leydig cell marker 3βHSD obviously reduced in the gonads of XY Sox9-Cre;Nr5a1 flox/− but not Sox9-Cre;Nr5a1 flox/flox mice at E15.5. The presence of STRA8 cells indicated that germ cells entered meiosis in the gonads of XY Sox9-Cre - Nr5a1 cKO mice. The results of qRT-PCR revealed remarkably reduced and elevated levels of testis and ovary markers, respectively, in the gonads of XY Sox9-Cre - Nr5a1 cKO mice at E12.5‒E13.5. These data suggested that the loss of Nr5a1 abrogates the testicular pathway and induces the ectopic ovarian pathway, resulting in postnatal partial/complete male-to-female gonadal sex reversal. Our findings provide evidence for the critical role of NR5A1 in murine gonadal sex determination in vivo.
国家哲学社会科学文献中心版权所有