摘要:Abstract Glioblastoma is the most common primary brain cancer and it is nearly impossible to remove the entire tumor with surgery or a single drug. EGFRvIII is the most frequent genetic change associated with glioblastoma, so EGFRvIII-based targeting therapies provide promise for treating glioblastoma. Herein, poly[2-methoxy-5-(2′-ethylhexyloxy)- p -phenylenevinylene] (PPV) was used as the core to prepare a conjugated polymer nanoparticle (PPVN) modified with anti-EGFRvIII (PPVN-A) that exhibited high ROS generation ability under white light irradiation. PPVN-A could target EGFRvIII-overexpressed tumor cells and damaged more than 90% of tumor cells with the light illumination while PPVN without modification exhibited no obvious cytotoxicity toward these cells under the same condition. Thus, the photodynamic treatment of glioblastoma cells using PPVN-A could be achieved, indicating the potential of anti-EGFRvIII-modified nanoparticles as a therapeutic material for treating glioblastoma in clinic.
其他摘要:Abstract Glioblastoma is the most common primary brain cancer and it is nearly impossible to remove the entire tumor with surgery or a single drug. EGFRvIII is the most frequent genetic change associated with glioblastoma, so EGFRvIII-based targeting therapies provide promise for treating glioblastoma. Herein, poly[2-methoxy-5-(2′-ethylhexyloxy)- p -phenylenevinylene] (PPV) was used as the core to prepare a conjugated polymer nanoparticle (PPVN) modified with anti-EGFRvIII (PPVN-A) that exhibited high ROS generation ability under white light irradiation. PPVN-A could target EGFRvIII-overexpressed tumor cells and damaged more than 90% of tumor cells with the light illumination while PPVN without modification exhibited no obvious cytotoxicity toward these cells under the same condition. Thus, the photodynamic treatment of glioblastoma cells using PPVN-A could be achieved, indicating the potential of anti-EGFRvIII-modified nanoparticles as a therapeutic material for treating glioblastoma in clinic.