首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam
  • 本地全文:下载
  • 作者:Bo Lin ; Anthony Chun Yin Yuen ; Timothy Bo Yuan Chen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:4684
  • DOI:10.1038/s41598-021-84083-2
  • 出版社:Springer Nature
  • 摘要:Abstract Recent discoveries of two-dimensional transitional metal based materials have emerged as an excellent candidate for fabricating nanostructured flame-retardants. Herein, we report an eco-friendly flame-retardant for flexible polyurethane foam (PUF), which is synthesised by hybridising MXene (Ti $$_3\hbox {C}_2$$ 3 C 2 ) with biomass materials including phytic acid (PA), casein, pectin, and chitosan (CH). Results show that coating PUFs with 3 layers of CH/PA/Ti $$_3\hbox {C}_2$$ 3 C 2 via layer-by-layer approach reduces the peak heat release and total smoke release by 51.1% and 84.8%, respectively. These exceptional improvements exceed those achieved by a CH/Ti $$_3\hbox {C}_2$$ 3 C 2 coating. To further understand the fundamental flame and smoke reduction phenomena, a pyrolysis model with surface regression was developed to simulate the flame propagation and char layer. A genetic algorithm was utilised to determine optimum parameters describing the thermal degradation rate. The superior flame-retardancy of CH/PA/Ti $$_3\hbox {C}_2$$ 3 C 2 was originated from the shielding and charring effects of the hybrid MXene with biomass materials containing aromatic rings, phenolic and phosphorous compounds.
  • 其他摘要:Abstract Recent discoveries of two-dimensional transitional metal based materials have emerged as an excellent candidate for fabricating nanostructured flame-retardants. Herein, we report an eco-friendly flame-retardant for flexible polyurethane foam (PUF), which is synthesised by hybridising MXene (Ti $$_3\hbox {C}_2$$ 3 C 2 ) with biomass materials including phytic acid (PA), casein, pectin, and chitosan (CH). Results show that coating PUFs with 3 layers of CH/PA/Ti $$_3\hbox {C}_2$$ 3 C 2 via layer-by-layer approach reduces the peak heat release and total smoke release by 51.1% and 84.8%, respectively. These exceptional improvements exceed those achieved by a CH/Ti $$_3\hbox {C}_2$$ 3 C 2 coating. To further understand the fundamental flame and smoke reduction phenomena, a pyrolysis model with surface regression was developed to simulate the flame propagation and char layer. A genetic algorithm was utilised to determine optimum parameters describing the thermal degradation rate. The superior flame-retardancy of CH/PA/Ti $$_3\hbox {C}_2$$ 3 C 2 was originated from the shielding and charring effects of the hybrid MXene with biomass materials containing aromatic rings, phenolic and phosphorous compounds.
国家哲学社会科学文献中心版权所有