首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Circulating cell free DNA response to exhaustive exercise in average trained men with type I diabetes mellitus
  • 本地全文:下载
  • 作者:Konrad Walczak ; Robert Stawski ; Ewelina Perdas
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:4639
  • DOI:10.1038/s41598-021-84201-0
  • 出版社:Springer Nature
  • 摘要:Abstract It is believed that neutrophils extracellular traps (NETs) formation is responsible for the increase in cf DNA after exercise. Since T1DM is accompanied by enhanced NETs generation, we compared exercise-induced increase in cf DNA in 14 men with T1DM and 11 healthy controls and analyzed its association with exercise load. Subjects performed a treadmill run to exhaustion at speed corresponding to 70% of their personal VO2max. Blood was collected before and just after exercise for determination of plasma cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, blood cell count and metabolic markers. Exercise resulted in the increase in median cf n-DNA from 3.9 ng/mL to 21.0 ng/mL in T1DM group and from 3.3 ng/mL to 28.9 ng/mL in controls. Median exercise-induced increment (∆) in cf n-DNA did not differ significantly in both groups (17.8 ng/mL vs. 22.1 ng/mL, p = 0.23), but this variable correlated with run distance (r = 0.66), Δ neutrophils (r = 0.86), Δ creatinine (r = 0.65) and Δ creatine kinase (r = 0.77) only in controls. Pre- and post-exercise cf mt-DNA were not significantly different within and between groups. These suggest low usefulness of Δ cf n-DNA as a marker of exercise intensity in T1DM men.
  • 其他摘要:Abstract It is believed that neutrophils extracellular traps (NETs) formation is responsible for the increase in cf DNA after exercise. Since T1DM is accompanied by enhanced NETs generation, we compared exercise-induced increase in cf DNA in 14 men with T1DM and 11 healthy controls and analyzed its association with exercise load. Subjects performed a treadmill run to exhaustion at speed corresponding to 70% of their personal VO2max. Blood was collected before and just after exercise for determination of plasma cf nuclear and mitochondrial DNA (cf n-DNA, cf mt-DNA) by real-time PCR, blood cell count and metabolic markers. Exercise resulted in the increase in median cf n-DNA from 3.9 ng/mL to 21.0 ng/mL in T1DM group and from 3.3 ng/mL to 28.9 ng/mL in controls. Median exercise-induced increment (∆) in cf n-DNA did not differ significantly in both groups (17.8 ng/mL vs. 22.1 ng/mL, p = 0.23), but this variable correlated with run distance (r = 0.66), Δ neutrophils (r = 0.86), Δ creatinine (r = 0.65) and Δ creatine kinase (r = 0.77) only in controls. Pre- and post-exercise cf mt-DNA were not significantly different within and between groups. These suggest low usefulness of Δ cf n-DNA as a marker of exercise intensity in T1DM men.
国家哲学社会科学文献中心版权所有