首页    期刊浏览 2025年04月15日 星期二
登录注册

文章基本信息

  • 标题:Growth stimulation of Bifidobacterium from human colon using daikenchuto in an in vitro model of human intestinal microbiota
  • 本地全文:下载
  • 作者:Kengo Sasaki ; Daisuke Sasaki ; Katsunori Sasaki
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:4580
  • DOI:10.1038/s41598-021-84167-z
  • 出版社:Springer Nature
  • 摘要:Abstract Daikenchuto (DKT) is a Japanese traditional herbal (Kampo) medicine containing ginseng, processed ginger, and Japanese or Chinese pepper. We aimed to determine how DKT affects human colonic microbiota. An in vitro microbiota model was established using fecal inocula collected from nine healthy volunteers, and each model was found to retain operational taxonomic units similar to the ones in the original human fecal samples. DKT was added to the in vitro microbiota model culture at a concentration of 0.5% by weight. Next-generation sequencing of bacterial 16S rRNA gene revealed a significant increase in the relative abundance of bacteria related to the Bifidobacterium genus in the model after incubation with DKT. In pure cultures, DKT significantly promoted the growth of Bifidobacterium adolescentis , but not that of Fusobacterium nucleatum or Escherichia coli . Additionally, in pure cultures, B. adolescentis transformed ginsenoside Rc to Rd, which was then probably utilized for its growth. Our study reveals the in vitro bifidogenic effect of DKT that likely contributes to its beneficial effects on the human colon.
  • 其他摘要:Abstract Daikenchuto (DKT) is a Japanese traditional herbal (Kampo) medicine containing ginseng, processed ginger, and Japanese or Chinese pepper. We aimed to determine how DKT affects human colonic microbiota. An in vitro microbiota model was established using fecal inocula collected from nine healthy volunteers, and each model was found to retain operational taxonomic units similar to the ones in the original human fecal samples. DKT was added to the in vitro microbiota model culture at a concentration of 0.5% by weight. Next-generation sequencing of bacterial 16S rRNA gene revealed a significant increase in the relative abundance of bacteria related to the Bifidobacterium genus in the model after incubation with DKT. In pure cultures, DKT significantly promoted the growth of Bifidobacterium adolescentis , but not that of Fusobacterium nucleatum or Escherichia coli . Additionally, in pure cultures, B. adolescentis transformed ginsenoside Rc to Rd, which was then probably utilized for its growth. Our study reveals the in vitro bifidogenic effect of DKT that likely contributes to its beneficial effects on the human colon.
国家哲学社会科学文献中心版权所有