摘要:This study aimed to focus on the high-value utilization of raw wheat gluten by determining the potent antioxidant peptides and angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten oligopeptides (WOP). WOP were analyzed for in vitro antioxidant activity and inhibition of ACE, and the identification of active peptides was performed by reversed-phase high-performance liquid chromatography and mass spectrometry. Quantitative analysis was performed for highly active peptides. Five potent antioxidant peptides, Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (6.07 ± 0.38, 7.28 ± 0.29, 11.18 ± 1.02, 5.93 ± 0.20 and 9.04 ± 0.47 mmol 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) equivalent/g sample, respectively), and five potent ACE inhibitory peptides, Leu-Tyr, Leu-Val-Ser, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (half maximal inhibitory concentration (IC 50 ) values = 0.31 ± 0.02, 0.60 ± 0.03, 2.00 ± 0.13, 1.47 ± 0.08 and 1.48 ± 0.11 mmol/L, respectively), were observed. The contents of Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser were 155.04 ± 8.36, 2.08 ± 0.12, 1.95 ± 0.06, 22.70 ± 1.35, 0.25 ± 0.01, and 53.01 ± 2.73 μg/g, respectively, in the WOP. Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser are novel antioxidative/ACE inhibitory peptides that have not been previously reported. The results suggest that WOP could potentially be applied in the food industry as a functional additive.
其他摘要:Abstract This study aimed to focus on the high-value utilization of raw wheat gluten by determining the potent antioxidant peptides and angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten oligopeptides (WOP). WOP were analyzed for in vitro antioxidant activity and inhibition of ACE, and the identification of active peptides was performed by reversed-phase high-performance liquid chromatography and mass spectrometry. Quantitative analysis was performed for highly active peptides. Five potent antioxidant peptides, Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (6.07 ± 0.38, 7.28 ± 0.29, 11.18 ± 1.02, 5.93 ± 0.20 and 9.04 ± 0.47 mmol 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) equivalent/g sample, respectively), and five potent ACE inhibitory peptides, Leu-Tyr, Leu-Val-Ser, Tyr-Gln, Ala-Pro-Ser-Tyr and Arg-Gly-Gly-Tyr (half maximal inhibitory concentration (IC 50 ) values = 0.31 ± 0.02, 0.60 ± 0.03, 2.00 ± 0.13, 1.47 ± 0.08 and 1.48 ± 0.11 mmol/L, respectively), were observed. The contents of Leu-Tyr, Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser were 155.04 ± 8.36, 2.08 ± 0.12, 1.95 ± 0.06, 22.70 ± 1.35, 0.25 ± 0.01, and 53.01 ± 2.73 μg/g, respectively, in the WOP. Pro-Tyr, Tyr-Gln, Ala-Pro-Ser-Tyr, Arg-Gly-Gly-Tyr, and Leu-Val-Ser are novel antioxidative/ACE inhibitory peptides that have not been previously reported. The results suggest that WOP could potentially be applied in the food industry as a functional additive.