摘要:Abstract The purpose of the study is to explore the effect of flue-curing procedure on the diversity of microbial communities in tobaccos and the dynamic change of compositions of microbial communities in the flue-curing process. It expects to provide a theoretical basis for the application of microbes in tobacco leaves and a theoretical basis and idea for optimization of the flue-curing technologies. By investigating tobacco variety K326, the tests were carried out for comparing the conventional flue-curing procedure and dry-ball temperature set and wet-ball temperature degradation flue-curing procedure. Based on the culture-independent approach and high-throughput sequencing procedure, the relationship between the flue-curing procedure for tobaccos and microbial communities in tobaccos was revealed by measuring the dynamic change of microbial communities. The results indicated that:(1) Relative to surface wiping method, washing method was more suitable for the sampling of microbes on the surface of tobacco leaves; (2) Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure was more favorable for maintaining the microbial diversity of tobaccos; (3) Relative to bacteria of the tobaccos, the succession rule of the fungal communities in tobaccos was relatively steady; (4)Compared with bacterial community diversity, the fungal community diversity presented an obvious negative correlation with temperature and humidity during the flue-curing process. (5) The function of bacterial communities in tobaccos matched with the material transformation law of tobaccos, having a direct correlation on the flue-curing process. In short, Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure can more favorably maintain the microbial diversity of tobaccos; moreover, the function of the tobacco system involved in microbes in tobaccos was closely related to the material transformation law of tobaccos in the flue-curing process. It validated that the bacteria in tobaccos play an important role in the flue-curing process of tobaccos.
其他摘要:Abstract The purpose of the study is to explore the effect of flue-curing procedure on the diversity of microbial communities in tobaccos and the dynamic change of compositions of microbial communities in the flue-curing process. It expects to provide a theoretical basis for the application of microbes in tobacco leaves and a theoretical basis and idea for optimization of the flue-curing technologies. By investigating tobacco variety K326, the tests were carried out for comparing the conventional flue-curing procedure and dry-ball temperature set and wet-ball temperature degradation flue-curing procedure. Based on the culture-independent approach and high-throughput sequencing procedure, the relationship between the flue-curing procedure for tobaccos and microbial communities in tobaccos was revealed by measuring the dynamic change of microbial communities. The results indicated that:(1) Relative to surface wiping method, washing method was more suitable for the sampling of microbes on the surface of tobacco leaves; (2) Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure was more favorable for maintaining the microbial diversity of tobaccos; (3) Relative to bacteria of the tobaccos, the succession rule of the fungal communities in tobaccos was relatively steady; (4)Compared with bacterial community diversity, the fungal community diversity presented an obvious negative correlation with temperature and humidity during the flue-curing process. (5) The function of bacterial communities in tobaccos matched with the material transformation law of tobaccos, having a direct correlation on the flue-curing process. In short, Dry-ball temperature set and wet-ball temperature degradation flue-curing procedure can more favorably maintain the microbial diversity of tobaccos; moreover, the function of the tobacco system involved in microbes in tobaccos was closely related to the material transformation law of tobaccos in the flue-curing process. It validated that the bacteria in tobaccos play an important role in the flue-curing process of tobaccos.