首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys
  • 本地全文:下载
  • 作者:Osman Mamun ; Madison Wenzlick ; Jeffrey Hawk
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1
  • DOI:10.1038/s41598-021-83694-z
  • 出版社:Springer Nature
  • 摘要:Abstract The class of 9–12% Cr ferritic-martensitic alloys (FMA) and austenitic stainless steels have received considerable attention due to their numerous applications in high temperature power generation industries. To design high strength steels with prolonged service life requires a thorough understanding of the long-term properties, e.g., creep rupture strength, rupture life, etc., as a function of the chemical composition and processing parameters that govern the microstructural characteristics. In this article, the creep rupture strength of both 9–12% Cr FMA and austenitic stainless steel has been parameterized using curated experimental datasets with a gradient boosting machine. The trained model has been cross validated against unseen test data and achieved high predictive performance in terms of correlation coefficient ( $$R^{2} > 0.98 $$ R 2 > 0.98 for 9–12% Cr FMA and $$R^{2} > 0.95 $$ R 2 > 0.95 for austenitic stainless steel) thus bypassing the need for additional comprehensive tensile test campaigns or physical theoretical calculations. Furthermore, the feature importance has been computed using the Shapley value analysis to understand the complex interplay of different features.
  • 其他摘要:Abstract The class of 9–12% Cr ferritic-martensitic alloys (FMA) and austenitic stainless steels have received considerable attention due to their numerous applications in high temperature power generation industries. To design high strength steels with prolonged service life requires a thorough understanding of the long-term properties, e.g., creep rupture strength, rupture life, etc., as a function of the chemical composition and processing parameters that govern the microstructural characteristics. In this article, the creep rupture strength of both 9–12% Cr FMA and austenitic stainless steel has been parameterized using curated experimental datasets with a gradient boosting machine. The trained model has been cross validated against unseen test data and achieved high predictive performance in terms of correlation coefficient ( $$R^{2} > 0.98 $$ R 2 > 0.98 for 9–12% Cr FMA and $$R^{2} > 0.95 $$ R 2 > 0.95 for austenitic stainless steel) thus bypassing the need for additional comprehensive tensile test campaigns or physical theoretical calculations. Furthermore, the feature importance has been computed using the Shapley value analysis to understand the complex interplay of different features.
国家哲学社会科学文献中心版权所有