首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Exploring genetic alterations in circulating tumor DNA from cerebrospinal fluid of pediatric medulloblastoma
  • 本地全文:下载
  • 作者:Yanling Sun ; Miao Li ; Siqi Ren
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:5638
  • DOI:10.1038/s41598-021-85178-6
  • 出版社:Springer Nature
  • 摘要:Abstract Medulloblastoma (MB) is the most common type of brain malignancy in children. Molecular profiling has become an important component to select patients for therapeutic approaches, allowing for personalized therapy. In this study, we successfully identified detectable levels of tumor-derived cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) samples of patients with MB. Furthermore, cfDNA from CSF can interrogate for tumor-associated molecular clues. MB-associated alterations from CSF, tumor, and post-chemotherapy plasma were compared by deep sequencing on next-generation sequencing platform. Shared alterations exist between CSF and matched tumor tissues. More alternations were detected in circulating tumor DNA from CSF than those in genomic DNA from primary tumor. It was feasible to detect MB-associated mutations in plasma of patients treated with chemotherapy. Collectively, CSF supernatant can be used to monitor genomic alterations, as a superior technique as long as tumor-derived cfDNA can be isolated from CSF successfully.
  • 其他摘要:Abstract Medulloblastoma (MB) is the most common type of brain malignancy in children. Molecular profiling has become an important component to select patients for therapeutic approaches, allowing for personalized therapy. In this study, we successfully identified detectable levels of tumor-derived cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) samples of patients with MB. Furthermore, cfDNA from CSF can interrogate for tumor-associated molecular clues. MB-associated alterations from CSF, tumor, and post-chemotherapy plasma were compared by deep sequencing on next-generation sequencing platform. Shared alterations exist between CSF and matched tumor tissues. More alternations were detected in circulating tumor DNA from CSF than those in genomic DNA from primary tumor. It was feasible to detect MB-associated mutations in plasma of patients treated with chemotherapy. Collectively, CSF supernatant can be used to monitor genomic alterations, as a superior technique as long as tumor-derived cfDNA can be isolated from CSF successfully.
国家哲学社会科学文献中心版权所有