首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Characterizing dissimilarity of weighted networks
  • 本地全文:下载
  • 作者:Yuanxiang Jiang ; Meng Li ; Ying Fan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:5768
  • DOI:10.1038/s41598-021-85175-9
  • 出版社:Springer Nature
  • 摘要:Abstract Measuring the dissimilarities between networks is a basic problem and wildly used in many fields. Based on method of the D-measure which is suggested for unweighted networks, we propose a quantitative dissimilarity metric of weighted network (WD-metric). Crucially, we construct a distance probability matrix of weighted network, which can capture the comprehensive information of weighted network. Moreover, we define the complementary graph and alpha centrality of weighted network. Correspondingly, several synthetic and real-world networks are used to verify the effectiveness of the WD-metric. Experimental results show that WD-metric can effectively capture the influence of weight on the network structure and quantitatively measure the dissimilarity of weighted networks. It can also be used as a criterion for backbone extraction algorithms of complex network.
  • 其他摘要:Abstract Measuring the dissimilarities between networks is a basic problem and wildly used in many fields. Based on method of the D-measure which is suggested for unweighted networks, we propose a quantitative dissimilarity metric of weighted network (WD-metric). Crucially, we construct a distance probability matrix of weighted network, which can capture the comprehensive information of weighted network. Moreover, we define the complementary graph and alpha centrality of weighted network. Correspondingly, several synthetic and real-world networks are used to verify the effectiveness of the WD-metric. Experimental results show that WD-metric can effectively capture the influence of weight on the network structure and quantitatively measure the dissimilarity of weighted networks. It can also be used as a criterion for backbone extraction algorithms of complex network.
国家哲学社会科学文献中心版权所有