首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16
  • 本地全文:下载
  • 作者:Liping Wang ; Miao Zhu ; Yulu Fang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:5701
  • DOI:10.1038/s41598-021-84891-6
  • 出版社:Springer Nature
  • 摘要:Abstract Enterovirus A71 (EV-A71), Coxsackievirus A16 (CV-A16) and CV-A10 are the major causative agents of hand, foot and mouth disease (HFMD). The conformational epitopes play a vital role in monitoring the antigenic evolution, predicting dominant strains and preparing vaccines. In this study, we employed a Bioinformatics-based algorithm to predict the conformational epitopes of EV-A71 and CV-A16 and compared with that of CV-A10. Prediction results revealed that the distribution patterns of conformational epitopes of EV-A71 and CV-A16 were similar to that of CV-A10 and their epitopes likewise consisted of three sites: site 1 (on the “north rim” of the canyon around the fivefold vertex), site 2 (on the “puff”) and site 3 (one part was in the “knob” and the other was near the threefold vertex). The reported epitopes highly overlapped with our predicted epitopes indicating the predicted results were reliable. These data suggested that three-site distribution pattern may be the basic distribution role of epitopes on the enteroviruses capsids. Our prediction results of EV-A71 and CV-A16 can provide essential information for monitoring the antigenic evolution of enterovirus.
  • 其他摘要:Abstract Enterovirus A71 (EV-A71), Coxsackievirus A16 (CV-A16) and CV-A10 are the major causative agents of hand, foot and mouth disease (HFMD). The conformational epitopes play a vital role in monitoring the antigenic evolution, predicting dominant strains and preparing vaccines. In this study, we employed a Bioinformatics-based algorithm to predict the conformational epitopes of EV-A71 and CV-A16 and compared with that of CV-A10. Prediction results revealed that the distribution patterns of conformational epitopes of EV-A71 and CV-A16 were similar to that of CV-A10 and their epitopes likewise consisted of three sites: site 1 (on the “north rim” of the canyon around the fivefold vertex), site 2 (on the “puff”) and site 3 (one part was in the “knob” and the other was near the threefold vertex). The reported epitopes highly overlapped with our predicted epitopes indicating the predicted results were reliable. These data suggested that three-site distribution pattern may be the basic distribution role of epitopes on the enteroviruses capsids. Our prediction results of EV-A71 and CV-A16 can provide essential information for monitoring the antigenic evolution of enterovirus.
国家哲学社会科学文献中心版权所有