首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A new bioinformatics approach identifies overexpression of GRB2 as a poor prognostic biomarker for prostate cancer
  • 本地全文:下载
  • 作者:Teppei Iwata ; Anna S. Sedukhina ; Manabu Kubota
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:5696
  • DOI:10.1038/s41598-021-85086-9
  • 出版社:Springer Nature
  • 摘要:Abstract A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as “overexpression” and “shorter survival” is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8).
  • 其他摘要:Abstract A subset of prostate cancer displays a poor clinical outcome. Therefore, identifying this poor prognostic subset within clinically aggressive groups (defined as a Gleason score (GS) ≧8) and developing effective treatments are essential if we are to improve prostate cancer survival. Here, we performed a bioinformatics analysis of a TCGA dataset (GS ≧8) to identify pathways upregulated in a prostate cancer cohort with short survival. When conducting bioinformatics analyses, the definition of factors such as “overexpression” and “shorter survival” is vital, as poor definition may lead to mis-estimations. To eliminate this possibility, we defined an expression cutoff value using an algorithm calculated by a Cox regression model, and the hazard ratio for each gene was set so as to identify genes whose expression levels were associated with shorter survival. Next, genes associated with shorter survival were entered into pathway analysis to identify pathways that were altered in a shorter survival cohort. We identified pathways involving upregulation of GRB2. Overexpression of GRB2 was linked to shorter survival in the TCGA dataset, a finding validated by histological examination of biopsy samples taken from the patients for diagnostic purposes. Thus, GRB2 is a novel biomarker that predicts shorter survival of patients with aggressive prostate cancer (GS ≧8).
国家哲学社会科学文献中心版权所有