首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Ocular biometric features of pediatric patients with fibroblast growth factor receptor-related syndromic craniosynostosis
  • 本地全文:下载
  • 作者:Byung Joo Lee ; Kihwang Lee ; Seung Ah Chung
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:6172
  • DOI:10.1038/s41598-021-85620-9
  • 出版社:Springer Nature
  • 摘要:Abstract Ametropia is reported as a common ophthalmic manifestation in craniosynostosis. We retrospectively compared childhood refractive error and ocular biometric features of fibroblast growth factor receptor (FGFR)-related syndromic craniosynostosis patients with those of non-syndromic craniosynostosis and control subjects. Thirty-six eyes (18 patients) with FGFR-related syndromic craniosynostosis, 76 eyes (38 patients) with non-syndromic craniosynostosis, and 114 eyes (57 patients) of intermittent exotropes were included in the analysis. Mean age at examination was 7.82 ± 2.51 (range, 4–16) years and mean spherical equivalent was -0.09 ± 1.46 Diopter. Mean age and refractive error were not different between groups, but syndromic craniosynostosis patients had significantly longer axial length, lower corneal power, and lower lens power than other groups ( p  < 0.01, p  < 0.01, and p  < 0.01, respectively). Axial length was positively correlated and keratometry and lens power were negatively correlated with age in non-syndromic craniosynostosis and controls, while these correlations between age and ocular biometric parameters were not present in the FGFR-related syndromic craniosynostosis. In conclusion, ocular biometric parameters in FGFR-related syndromic craniosynostosis differed from those of non-syndromic craniosynostosis and age-matched controls, and did not show the relations with age, suggesting this cohort may have abnormal refractive growth.
  • 其他摘要:Abstract Ametropia is reported as a common ophthalmic manifestation in craniosynostosis. We retrospectively compared childhood refractive error and ocular biometric features of fibroblast growth factor receptor (FGFR)-related syndromic craniosynostosis patients with those of non-syndromic craniosynostosis and control subjects. Thirty-six eyes (18 patients) with FGFR-related syndromic craniosynostosis, 76 eyes (38 patients) with non-syndromic craniosynostosis, and 114 eyes (57 patients) of intermittent exotropes were included in the analysis. Mean age at examination was 7.82 ± 2.51 (range, 4–16) years and mean spherical equivalent was -0.09 ± 1.46 Diopter. Mean age and refractive error were not different between groups, but syndromic craniosynostosis patients had significantly longer axial length, lower corneal power, and lower lens power than other groups ( p  < 0.01, p  < 0.01, and p  < 0.01, respectively). Axial length was positively correlated and keratometry and lens power were negatively correlated with age in non-syndromic craniosynostosis and controls, while these correlations between age and ocular biometric parameters were not present in the FGFR-related syndromic craniosynostosis. In conclusion, ocular biometric parameters in FGFR-related syndromic craniosynostosis differed from those of non-syndromic craniosynostosis and age-matched controls, and did not show the relations with age, suggesting this cohort may have abnormal refractive growth.
国家哲学社会科学文献中心版权所有