摘要:Abstract Several studies have shown that probiotics and synbiotics ameliorate dyslipidemia. However, the molecular mechanisms mediating their effects remain to be determined. Therefore, we aimed to compare the effects of a probiotic, a prebiotic, and a synbiotic in dyslipidemic Sprague–Dawley rats, and explore the mechanisms involved using a proteomic approach. The rats were allocated to five groups: a control group that was fed normal chow, and four high-fat diet-fed groups, three of which were administered a probiotic ( Lactobacillus acidophilus ), a prebiotic (inulin), or a combination of the two (a synbiotic) for 30 days. We showed that the administration of inulin, and especially L. acidophilus , improved the lipid profile and reduced the serum concentrations of inflammatory markers in high-fat diet-fed rats. Proteomic analysis showed changes in lipid elongation, glycerolipid metabolism, activation of antioxidants, and a reduction in the activation of the mitogen-activated protein kinase signaling pathway in the livers of rats administered L. acidophilus , which likely mediate its beneficial effects on inflammation and dyslipidemia by reduced the levels of 18.56% CRP, 35.71% TNF-α 25.6% LDL-C and 28.57% LDL-C/HDL-C ratio when compared to HF group. L. acidophilus and inulin may represent effective natural means of maintaining inflammation and dyslipidemia.
其他摘要:Abstract Several studies have shown that probiotics and synbiotics ameliorate dyslipidemia. However, the molecular mechanisms mediating their effects remain to be determined. Therefore, we aimed to compare the effects of a probiotic, a prebiotic, and a synbiotic in dyslipidemic Sprague–Dawley rats, and explore the mechanisms involved using a proteomic approach. The rats were allocated to five groups: a control group that was fed normal chow, and four high-fat diet-fed groups, three of which were administered a probiotic ( Lactobacillus acidophilus ), a prebiotic (inulin), or a combination of the two (a synbiotic) for 30 days. We showed that the administration of inulin, and especially L. acidophilus , improved the lipid profile and reduced the serum concentrations of inflammatory markers in high-fat diet-fed rats. Proteomic analysis showed changes in lipid elongation, glycerolipid metabolism, activation of antioxidants, and a reduction in the activation of the mitogen-activated protein kinase signaling pathway in the livers of rats administered L. acidophilus , which likely mediate its beneficial effects on inflammation and dyslipidemia by reduced the levels of 18.56% CRP, 35.71% TNF-α 25.6% LDL-C and 28.57% LDL-C/HDL-C ratio when compared to HF group. L. acidophilus and inulin may represent effective natural means of maintaining inflammation and dyslipidemia.