首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Source location of volcanic earthquakes and subsurface characterization using fiber-optic cable and distributed acoustic sensing system
  • 本地全文:下载
  • 作者:Takeshi Nishimura ; Kentaro Emoto ; Hisashi Nakahara
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:6319
  • DOI:10.1038/s41598-021-85621-8
  • 出版社:Springer Nature
  • 摘要:Abstract We present one of the first studies on source location determination for volcanic earthquakes and characterization of volcanic subsurfaces using data from a distributed acoustic sensing (DAS) system. Using the arrival time difference estimated from well-correlated waveforms and a dense spatial distribution of seismic amplitudes recorded along the fiber-optic cable, we determine the hypocenters of volcanic earthquakes recorded at Azuma volcano, Japan. The sources are located at a shallow depth beneath active volcanic areas with a range of approximately 1 km. Spatial distribution of the site amplification factors determined from coda waves of regional tectonic earthquakes are well correlated with old lava flow distributions and volcano topography. Since DAS observation can be performed remotely and buried fiber-optic cables are not damaged by volcanic ash or bombs during eruptions, this new observation system is suitable for monitoring of volcanoes without risk of system damage and for evaluating volcanic structures.
  • 其他摘要:Abstract We present one of the first studies on source location determination for volcanic earthquakes and characterization of volcanic subsurfaces using data from a distributed acoustic sensing (DAS) system. Using the arrival time difference estimated from well-correlated waveforms and a dense spatial distribution of seismic amplitudes recorded along the fiber-optic cable, we determine the hypocenters of volcanic earthquakes recorded at Azuma volcano, Japan. The sources are located at a shallow depth beneath active volcanic areas with a range of approximately 1 km. Spatial distribution of the site amplification factors determined from coda waves of regional tectonic earthquakes are well correlated with old lava flow distributions and volcano topography. Since DAS observation can be performed remotely and buried fiber-optic cables are not damaged by volcanic ash or bombs during eruptions, this new observation system is suitable for monitoring of volcanoes without risk of system damage and for evaluating volcanic structures.
国家哲学社会科学文献中心版权所有