摘要:Abstract A mechanical time-of-flight filter intended for measurement of velocities of nanoparticles exiting a gas aggregation source has been developed. Several configurations maximizing simplicity, throughput or resolution are suggested and investigated both theoretically and experimentally. It is shown that the data measured using such filters may be easily converted to the real velocity distribution with high precision. Furthermore, it is shown that properly designed filters allow for the monitoring of the velocity of nanoparticles even at the conditions with extremely low intensity of the nanoparticle beam.
其他摘要:Abstract A mechanical time-of-flight filter intended for measurement of velocities of nanoparticles exiting a gas aggregation source has been developed. Several configurations maximizing simplicity, throughput or resolution are suggested and investigated both theoretically and experimentally. It is shown that the data measured using such filters may be easily converted to the real velocity distribution with high precision. Furthermore, it is shown that properly designed filters allow for the monitoring of the velocity of nanoparticles even at the conditions with extremely low intensity of the nanoparticle beam.