摘要:Abstract Microbiome is known to play an important role in the health of organisms and different factors such as diet have been associated with modifications in microbial communities. Differences in the microbiota composition of wild and captive animals has been evaluated; however, variation during a reintroduction process in primates has never been reported. Our aim was to identify changes in the bacterial composition of three individuals of reintroduced woolly monkeys ( Lagothrix lagothricha ) and the variables associated with such changes. Fecal samples were collected and the V4 region of the 16S rRNA gene was sequenced to determine gut microbial composition and functionality. Individual samples from released individuals showed a higher microbial diversity after being released compared to before liberation, associated with changes in their diet. Beta diversity and functionality analysis showed separation of samples from released and captive conditions and the major factor of variation was the moment of liberation. This study shows that intestinal microbiota varies depending on site conditions and is mainly associated with diet diversity. The intake of food from wild origin by released primates may promote a positive effect on gut microbiota, improving health, and potentially increasing success in reintroduction processes.
其他摘要:Abstract Microbiome is known to play an important role in the health of organisms and different factors such as diet have been associated with modifications in microbial communities. Differences in the microbiota composition of wild and captive animals has been evaluated; however, variation during a reintroduction process in primates has never been reported. Our aim was to identify changes in the bacterial composition of three individuals of reintroduced woolly monkeys ( Lagothrix lagothricha ) and the variables associated with such changes. Fecal samples were collected and the V4 region of the 16S rRNA gene was sequenced to determine gut microbial composition and functionality. Individual samples from released individuals showed a higher microbial diversity after being released compared to before liberation, associated with changes in their diet. Beta diversity and functionality analysis showed separation of samples from released and captive conditions and the major factor of variation was the moment of liberation. This study shows that intestinal microbiota varies depending on site conditions and is mainly associated with diet diversity. The intake of food from wild origin by released primates may promote a positive effect on gut microbiota, improving health, and potentially increasing success in reintroduction processes.