首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Response of the chemical structure of soil organic carbon to modes of maize straw return
  • 本地全文:下载
  • 作者:Shuqing Zheng ; Jiuming Zhang ; Fengqin Chi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:1
  • DOI:10.1038/s41598-021-84697-6
  • 出版社:Springer Nature
  • 摘要:Abstract Elucidating the chemical structure of soil organic matter (SOM) is important for accurately evaluating the stability and function of SOM. Aboveground vegetation directly affects the quantity and quality of exogenous organic matter input into the soil through plant residues and root exudates, which in turn affects soil microbial species, community structure, and activity, and ultimately impacts the chemical structure of SOM. In this study, a 13 C nuclear magnetic resonance technique was used to analyze the chemical structure characteristics of soil organic carbon (SOC) under various rates of straw returning combined with rotary tillage and under full straw mulching. The results showed that full straw returning with rotary tillage and full straw mulching more effectively increased the SOC content than reduced rate of straw returning (1/2 and 1/3 of full straw) with rotary tillage. The contents of alkyl C and alkoxy C in the functional groups of SOC under various straw returning treatments were increased compared with those under the treatment of maize stubble remaining in soil (CK). Furthermore, the contents of aromatic C and carboxyl C were decreased, which were consistent with the chemical shift changes of SOC. Compared with CK treatment, straw returning decreased the content of aromatic C in the functional groups of SOC, but increased the content of alkoxy C, which could be associated with the change in integral areas of absorption peaks of alkyl C and alkoxy C moving toward left and right, respectively. The content of total SOC was significantly positively ( P  < 0.05) correlated with that of alkoxy C and significantly negatively ( P  < 0.01) correlated with that of aromatic C. The molecular structure of SOC tends to be simplified due to the decreasing in refractory C and the increasing in easily decomposed C after straw returning to the field.
  • 其他摘要:Abstract Elucidating the chemical structure of soil organic matter (SOM) is important for accurately evaluating the stability and function of SOM. Aboveground vegetation directly affects the quantity and quality of exogenous organic matter input into the soil through plant residues and root exudates, which in turn affects soil microbial species, community structure, and activity, and ultimately impacts the chemical structure of SOM. In this study, a 13 C nuclear magnetic resonance technique was used to analyze the chemical structure characteristics of soil organic carbon (SOC) under various rates of straw returning combined with rotary tillage and under full straw mulching. The results showed that full straw returning with rotary tillage and full straw mulching more effectively increased the SOC content than reduced rate of straw returning (1/2 and 1/3 of full straw) with rotary tillage. The contents of alkyl C and alkoxy C in the functional groups of SOC under various straw returning treatments were increased compared with those under the treatment of maize stubble remaining in soil (CK). Furthermore, the contents of aromatic C and carboxyl C were decreased, which were consistent with the chemical shift changes of SOC. Compared with CK treatment, straw returning decreased the content of aromatic C in the functional groups of SOC, but increased the content of alkoxy C, which could be associated with the change in integral areas of absorption peaks of alkyl C and alkoxy C moving toward left and right, respectively. The content of total SOC was significantly positively ( P  < 0.05) correlated with that of alkoxy C and significantly negatively ( P  < 0.01) correlated with that of aromatic C. The molecular structure of SOC tends to be simplified due to the decreasing in refractory C and the increasing in easily decomposed C after straw returning to the field.
国家哲学社会科学文献中心版权所有