期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2020
卷号:10
期号:3
页码:3216-3226
DOI:10.11591/ijece.v10i3.pp3216-3226
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Multi-tenancy is one of the key components of cloud computing environment. Multi-tenant database system in SaaS (Software as a Service) has gained a lot of attention in academics, research and business arena. These database systems provide scalability and economic benefits for both cloud service providers and customers(organizations/companies referred as tenants) by sharing same resources and infrastructure in isolation of shared databases, network and computing resources with Service level agreement (SLA) compliances. In a multitenant scenario, active tenants compete for resources in order to access the database. If one tenant blocks up the resources, the performance of all the other tenants may be restricted and a fair sharing of the resources may be compromised. The performance of tenants must not be affected by resource-intensive activities and volatile workloads of other tenants. Moreover, the prime goal of providers is to accomplish low cost of operation, satisfying specific schemas/SLAs of each tenant. Consequently, there is a need to design and develop effective and dynamic resource sharing algorithms which can handle above mentioned issues. This work presents a model embracing a query classification and worker sorting technique to efficiently share I/O, CPU and Memory thus enhancing dynamic resource sharing and improvising the utilization of idle instances proficiently. The model is referred as Multi-Tenant Dynamic Resource Scheduling Model (MTDRSM) .The MTDRSM support workload execution of different benchmark such as TPC-C(Transaction Processing Performance Council), YCSB(The Yahoo! Cloud Serving Benchmark)etc. and on different database such as MySQL, Oracle, H2 database etc. Experiments are conducted for different benchmarks with and without SLA compliances to evaluate the performance of MTDRSM in terms of latency and throughput achieved. The experiments show significant performance improvement over existing Mute Bench model in terms of latency and throughput.