首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Benchmarking data mining approaches for traveler segmentation
  • 本地全文:下载
  • 作者:Tamer Uçar ; Adem Karahoca
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 页码:409
  • DOI:10.11591/ijece.v11i1.pp409-415
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:The purpose of this study is proposing a hybrid data mining solution for traveler segmentation in tourism domain which can be used for planning user-oriented trips, arranging travel campaigns or similar services. Data set used in this work have been provided by a travel agency which contains flight and hotel bookings of travelers. Initially, the data set was prepared for running data mining algorithms. Then, various machine learning algorithms were benchmarked for performing accurate traveler segmentation and prediction tasks. Fuzzy C-means and X-means algorithms were applied for clustering user data. J48 and multilayer perceptron (MLP) algorithms were applied for classifying instances based on segmented user data. According to the findings of this study, J48 has the most effective classification results when applied on the data set which is clustered with X-means algorithm. The proposed hybrid data mining solution can be used by travel agencies to plan trip campaigns for similar travelers.
国家哲学社会科学文献中心版权所有