期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2021
卷号:11
期号:3
页码:2285
DOI:10.11591/ijece.v11i3.pp2285-2292
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:There is enormous amount information available in different forms of sources and genres. In order to extract useful information from a massive amount of data, automatic mechanism is required. The text summarization systems assist with content reduction keeping the important information and filtering the non-important parts of the text. Good document representation is really important in text summarization to get relevant information. Bag-of-words cannot give word similarity on syntactic and semantic relationship. Word embedding can give good document representation to capture and encode the semantic relation between words. Therefore, centroid based on word embedding representation is employed in this paper. Myanmar news summarization based on different word embedding is proposed. In this paper, Myanmar local and international news are summarized using centroid-based word embedding summarizer using the effectiveness of word representation approach, word embedding. Experiments were done on Myanmar local and international news dataset using different word embedding models and the results are compared with performance of bag-of-words summarization. Centroid summarization using word embedding performs comprehensively better than centroid summarization using bag-of-words.