首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Automatic Transfer Rate Adjustment for Transfer Reinforcement Learning
  • 本地全文:下载
  • 作者:Hitoshi Kono ; Yuto Sakamoto ; Yonghoon Ji
  • 期刊名称:International Journal of Artificial Intelligence & Applications (IJAIA)
  • 印刷版ISSN:0976-2191
  • 电子版ISSN:0975-900X
  • 出版年度:2020
  • 卷号:11
  • 期号:6
  • 页码:47-54
  • DOI:10.5121/ijaia.2020.11605
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This paper proposes a novel parameter for transfer reinforcement learning to avoid over-fitting when an agent uses a transferred policy from a source task. Learning robot systems have recently been studied for many applications, such as home robots, communication robots, and warehouse robots. However, if the agent reuses the knowledge that has been sufficiently learned in the source task, deadlock may occur and appropriate transfer learning may not be realized. In the previous work, a parameter called transfer rate was proposed to adjust the ratio of transfer, and its contribution include avoiding dead lock in the target task. However, adjusting the parameter depends on human intuition and experiences. Furthermore, the method for deciding transfer rate has not discussed. Therefore, an automatic method for adjusting the transfer rate is proposed in this paper using a sigmoid function. Further, computer simulations are used to evaluate the effectiveness of the proposed method to improve the environmental adaptation performance in a target task, which refers to the situation of reusing knowledge.
  • 关键词:Reinforcement Learning;Transfer Learning;Transfer rate;Overfitting;Overlearning
国家哲学社会科学文献中心版权所有