期刊名称:Signal & Image Processing : An International Journal (SIPIJ)
印刷版ISSN:2229-3922
电子版ISSN:0976-710X
出版年度:2021
卷号:12
期号:1
页码:1-8
DOI:10.5121/sipij.2021.12101
出版社:Academy & Industry Research Collaboration Center (AIRCC)
摘要:Lawn area measurement is an application of image processing and deep learning. Researchers used hierarchical networks, segmented images, and other methods to measure the lawn area. Methods’ effectiveness and accuracy varies. In this project, deep learning method, specifically Convolutional neural network, was applied to measure the lawn area. We used Keras and TensorFlow in Python to develop a model that was trained on the dataset of houses then tuned the parameters with GridSearchCV in ScikitLearn (a machine learning library in Python) to estimate the lawn area. Convolutional neural network or shortly CNN shows high accuracy (94 -97%). We may conclude that deep learning method, especially CNN, could be a good method with a high state-of-art accuracy.
其他摘要:Lawn area measurement is an application of image processing and deep learning. Researchers used hierarchical networks, segmented images, and other methods to measure the lawn area. Methods’ effectiveness and accuracy varies. In this project, deep learning method, specifically Convolutional neural network, was applied to measure the lawn area. We used Keras and TensorFlow in Python to develop a model that was trained on the dataset of houses then tuned the parameters with GridSearchCV in ScikitLearn (a machine learning library in Python) to estimate the lawn area. Convolutional neural network or shortly CNN shows high accuracy (94 -97%). We may conclude that deep learning method, especially CNN, could be a good method with a high state-of-art accuracy.